• Title/Summary/Keyword: $CO_2$ Saturation

Search Result 355, Processing Time 0.022 seconds

$CO_2$ Sensing Characteristics of PLD NASICON Thin Films (PLD법에 의해 제작된 NASICON 박막의 $CO_2$ 감지특성)

  • Min, Nam-Ki;Jin, Joon-Hyung;Lee, Sang-Yeol;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1657-1659
    • /
    • 1999
  • Our $CO_2$ sensor is based on an electrochemical reaction involving NASICON, Ba-Stabilized $Na_2CO_3$, two Pt electrodes, $O_2$, and $CO_2$.. NASICON thin films were deposited by pulsed laser deposition(PLD). The sensitive electrode made of Ba-stabilized sodium carbonate was magnetron sputtered. An emf between two Pt electrodes was proportional to the logarism of the concentration of $CO_2$ in the ambient. This sensor has a sensitivity of 3.82mV/decade and does not show any saturation for $CO_2$ concentration as high as 200,000 ppm.

  • PDF

Effect of Submucosal Midazolam on Percutaneous Saturation Percentage of Oxygen ($SpO_2$), End-tidal Carbon Dioxide ($EtCO_2$) and Physiologic Response When Combined with Chloral Hydrate, Hydroxyzine and Nitrous Oxide Sedation (구강 점막 하 주입 Midazolam과 경구 투여한 Chloral Hydrate의 용량에 따른 산소 포화도 및 생징후 변화에 대한 비교 연구)

  • Yu, Ji-Hye;Kim, Yun-Hee;Jung, Sang-Hyuk;Baek, Kwang-Woo
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.6 no.2 s.11
    • /
    • pp.89-97
    • /
    • 2006
  • Background: The aim of this study was to examine the difference of $SpO_2$, PR, $EtCO_2$, RR with submucosal injection of midazolam to oral chloral hydrate and hydroxyzine for pediatric patients Methods: Thirty two sedation cases were performed in this study. Patients were randomly classified into one group taking oral CH (60 mg/kg). hydroxyzine (1 mg/kg) and submucosal injection of midazolam (0.1 mg/kg) and the other group recieving oral CH (50 mg/kg), hydroxyzine (1 mg/kg) and submucosal injection of midazolam (0.2 mg/kg). For evaluating the depth of sedation. data including saturation percentage of oxygen ($SpO_2$), pulse rate (PR), end-tidal carbon dioxide ($EtCO_2$), respiratory rate (RR) and the behavior scale were checked every 2 minutes and were collected for only 40 minutes from the beginning of treatment and were analyzed using Two independent sample T-test. Results: Analysis showed no significant difference in the mean $SpO_2$, PR, $EtCO_2$, RR during sedation between two groups (P > 0.05). The values of $SpO_2$, PR, $EtCO_2$ and RR for both groups remained within the normal values. Conclusions: The results of this present study indicate that combination of oral CH, hydroxyzine, nitrous oxide gas inhalation and submucosal injection of midazolam improved the sedation quality without compromising safety.

  • PDF

Effect of Nucleation and Growth Dynamics on Saturation Magnetization of Chemically Synthesized Fe Nanoparticles

  • Ogawa, T.;Seto, K.;Hasegawa, D.;Yang, H.T.;Kura, H.;Doi, M.;Takahashi, M.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • In order to obtain mono-dispersed Fe NPs with high saturation magnetization, quantitative analysis method to investigate the growth dynamics of the Fe NPs synthesized by a conventional thermal decomposition method has been developed. As a result, fast nucleation process promotes formation of ~4 nm of initial nucleus with a non-equilibrium phase, resulting in low saturation magnetization. And slow particle growth with atomic-scaled surface precipitation mode (< 100 atoms/($min{\cdot}nm^2$)) can form the growth layer on the surface of initial nucleus with high saturation magnetization (~190 emu/$g_{Fe}$) as an equilibrium a phase of Fe. Therefore, higher stabilization of small initial nucleus generated just after the injection of $Fe(CO)_5$ should be one of the key issues to achieve much higher $M_s$ of Fe NPs.

Magnetic Properties of Three-layered Ferromagnetic Films with a NiFeCuMo Intermediately Super-soft Magnetic Layer (강자성층 사이에 초연자성 NiFeCuMo 중간층을 삽입한 3층 박막구조의 자기적 특성)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2010
  • Two-layered ferromagnetic alloy films (NiFe, CoFe) with a Conetic (NiFeCuMo) intermediately soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of saturation field of hard axis. Thickness dependence of the $H_{EC}$ (coercivity of easy axis), $H_{HS}$ (saturation field of hard axis.), and X (susceptibility) of NiFe and NiFeCuMo thin films for the glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared by the ion beam deposition method was measured. The magnetic properties $H_{EC}$, $H_{HS}$, and X of two-layered ferromagnetic CoFe, NiFe films with a NiFeCuMo intermediately super-soft magnetic layer were strongly depended on the thickness of NiFeCuMo layer. The value of the coercivity and magnetic susceptibility of the NiFeCuMo film decreased by 25% and doubled relative to that of the NiFe film.

Properties of Hexaferrite Co2Y(Ba2Co2Fe12O22) Prepared by Coprecipitation Method (공침법에 의해 제조된 육방정 산화철 Co2Y(Ba2Co2Fe12O22)의 특성)

  • 신형섭;이상걸;권순주
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.195-201
    • /
    • 1992
  • It had been studied the structure and the magnetic properties of singel phase Co2Y(Ba2Co2Fe12O22) powder, one of the hexagonal ferrite. The material was successfully prepared by a commercially applicable coprecipitation method. Adding asqueous solution of BaCl2, CoCl2 and FeCl2(Ba2+:Co2+:Fe2+=1:1:6 in mole ratio) to a mixture of NaOH and hydrogen peroxide solution, coprecipitate was formed with rapid oxidation of ferrous to ferric ion. The coprecipitate transformed to single phase Co2Y powder at heat treatment temperatures as low as 900$^{\circ}C$. The shape of Co2Y particles obtained at 900$^{\circ}C$ was hexagonal plate-like (diameter∼$\mu\textrm{m}$, aspect ratio>10). The structure of the Co2Y was refined by a Rietveld analysis of the measured X-ray diffractogram. The lattice parameters are ao=5.8602${\AA}$ and co=43.512${\AA}$. Co2Y is a soft magnetic material with saturation magnetization 30 emu/g and coecivity 170 . A standard X-ray diffraction pattern for Co2Y is proposed as well.

  • PDF

Structural Development of Polypropylene Foam by Crosslinking and Processing Conditions (가교도와 공정 조건에 따른 폴리프로필렌 발포체 구조 변화)

  • 황대영;한갑동;홍다윗;이규일;이기윤
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.529-537
    • /
    • 2000
  • The effects of the gel content on the cell structures of PP sheets by using an electron-curing system were investigated. Three extruded PP sheets crosslinked by three different doses were used for the batch foaming process with the supercritical state $CO_2$. Experiments were also performed in order to study the effects of the gel content, saturation pressure and temperature on cell structures. Then foaming conditions, such as temperature and duration of time, were changed. The amount of gas absorbed into PP samples was not affected by gel contents and the operating condition of saturation pressure, which was higher than 2000 psi. The foam cells of PP with a low gel content grew irregularly at a higher foaming temperature and for a longer duration of foaming time. However, PP samples with high gel content showed even cell structures and narrow tell size distributions under the severe conditions of high foaming temperatures and long duration of foaming time.

  • PDF

Microstructure and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Chemical Solution Mixing and Hydrogen Reduction Methods (화학용액혼합과 수소환원법으로 제조된 나노 구조 Fe-Co 합금분말의 미세구조 및 자성 특성)

  • 박현우;이백희;이규환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.333-336
    • /
    • 2003
  • The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. $FeCl_2$0 and $CoCl_2$ powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50$0^{\circ}C$ for 1 h in H$_2$ atmosphere. The fabricated Fe-Co alloy powders showed $\alpha$' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.

Effect of Carrier Gas on the Microstructure and Magnetic Properties of Co Nanoparticles Synthesized by Chemical Vapor Condensation (화학기상응축공정(Chemical Vapor Condensation)으로 제조된 Co 나노분말의 미세구조 및 자기적 성질에 미치는 운송기체의 영향)

  • ;X. L. Dong
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • The nano-sized Co particles were successfully synthesized by chemical vapor condensation (CVC) process using the precursor of cobalt carbonyl ($Co_2(CO)_8$). The influence of carrier gases on the microstructure and magnetic properties of nanoparticles was investigated by means of XRD, TEM, XPS and VSM. The Co nano-particles with different phases and shapes were synthesized with a change of carrier gas : long string morphologies with coexistence of fcc and hcp structure in Ar carrier gas condition; finer Co core in a mass of cobalt oxide with only fcc structure in He; rod type cobalt oxide phase in Ar+6vol%$O_2$. The saturation magnetization and coercivity was lower in Co nanoparticles synthesized in He carrier gas, due to their finer size.

Characterization of CO2 Adsorption Process for a Water Removal from Coal (석탄 내 수분 제거를 위한 CO2 흡착 효과에 대한 연구)

  • SEUNGTAEK LEE;HAKDEOK KIM;JUHUN SONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2024
  • In this study, the extent of water removal in the high-moisture coal was measured. The simplified adsorption model was developed to predict the extent of water removal. The water removal was observed to increase up to 25% at saturation condition of 25℃. The modeling work shows that adsorption contributes the water removal only by 3%, whereas other factors such as CO2 solubility and wettability would be responsible for the water removal.

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.