• Title/Summary/Keyword: $CO_2$ Reforming

Search Result 247, Processing Time 0.025 seconds

A Comparative Study of Commercial Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응에서의 상용촉매 비교연구)

  • Park, Jung-Eun;Park, Jae-Hyun;Yim, Sung-Dae;Kim, Chang-Soo;Park, Eun-Duck
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • The comparison work was conducted for the methanol steam reforming among commercial Cu-based catalysts, viz. ICI-M45, which is for the methanol synthesis, MDC-3 and MDC-7, which are for the water-gas shift reaction. The catalytic activity for the water-gas shift reaction was also compared over three catalysts. Among them, MDC-7 showed the highest methanol conversion and formation rate of hydrogen and carbon dioxide at 473 K for the methanol steam reforming. To find out any promotional effect between ICI-M45 and MDC-7, three different packing methods with these two catalysts were examined. However, no synergistic effect was observed. The catalytic activity for watergas shift reaction decreased in the following order: MDC-7 > MDC-3 > ICI-M45. The highest activity of MDC-7 for the methanol steam reforming as well as the water-gas shift reaction can be due to its high surface area, copper dispersion, and an adequate Cu/Zn ratio.

Investigation of the Water Gas Shift from Reforming Gas for CO Removal (일산화탄소 저감을 위한 개질가스의 전이반응 연구)

  • Kim, Seong-Cheon;Youn, Moon-Jung;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.855-859
    • /
    • 2007
  • Hydrogen as an energy carrier in fuel cell offers perhaps the largest potential benefits of reduced emissions of pollutants and greenhouse gases. The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. Reduction of carbon monoxide to an acceptable level of 10ppm involves high temperature and low temperature water gas shift (WGS), followed by selective oxidation of residual carbon monoxide. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 5000 ppm. In the water gas shift operation, gas emerges from the reformer is taken through a high temperature shift (HTS) catalyst to reduce the CO concentration to about $2{\sim}4%$ followed to about 5000 ppm via a low temperature shift (LTS) catalyst.

A Study on the Optimum Design for LTCC Micro-Reformer: Design and performance evalution of monolith fuel reformer/PROX (LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구 ; 일체형 Reformer/PROX 반응기의 설계 및 성능평가)

  • Chung, C.H.;Oh, J.H.;Jang, J.H.;Jeong, M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.615-616
    • /
    • 2006
  • A micro-fuel processor system integrating steam reformer and partial oxidation reactor was manufactured using low temperature cofired ceramic (LTCC). A CuO/ZnO/$Al_2O_3$ catalyst and Pt-based catalyst prepared by wet impregnation were used for steam reforming and partial oxidation, respectively. The performance of the LTCC micro-fuel processor was measured at various operating conditions such as the effect of the feed flow rate, the ratio of $H_2O/CH_3OH$, and the operating temperature on the LTCC reformer and CO clean-up system. The catalyst layer was loaded with "Fill and Dry" coating for small volume. The product gas was composed of $70\sim75%$ hydrogen, $20\sim25%$ carbon dioxide, and $1\sim2%$ carbon monoxide at $250\sim300^{\circ}C$, respectively.

  • PDF

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

Autothermal Reforming of Propane over Ni/CexZr1-xO2 Catalysts (Ni 담지 CexZr1-xO2 촉매상에서 프로판의 자열개질반응)

  • Kong, Jin-Hwa;Park, Nam-Cook;Kim, Young-Chul
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • In this study, the catalytic performance and characterization of $Ni/Ce_xZr_{1-x}O_2$ were investigated using an autothermal reforming (ATR) process for hydrogen production. The $Ni/Ce_xZr_{1-x}O_2$ catalysts were prepared using the following methods: the water method (CZ-W), urea water method (CZ-UW) and urea, water and ethanol method (CZ-UWA). The performance of $Ni/Ce_xZr_{1-x}O_2$ catalysts in autothermal reforming of propane for hydrogen production was studied in a fixed-bed flow reactor. Reaction tests were conducted by using a feed of $H_2O/C_3H_8/O_2$=3/1/0.37 and $300{\sim}700^{\circ}C$. The CZ-UW and CZ-UWA catalysts showed higher propane conversion and hydrogen yield than the CZ-W catalyst. The activity test confirmed that the improvement in the water-ethanol catalyst was due to the low level of carbon deposition. SEM showed that the surface carbon consisted of clusters on the used CZ-UW catalyst, which is incontrast to the nano-fiber morphology observed on the used CZ-UWA catalyst. It was found that the amount of carbon deposition depends on the preparation method. Especially the $Ni/Ce_{0.75}Zr_{0.25}O_2$ was showed higher propane conversion and hydrogen yield than the other catalysts. Also TGA showed that the resistance of carbon deposition increase to Co addition.

Evaluating the Efficacy of Commercial Polysulfone Hollow Fiber Membranes for Separating H2 from H2/CO Gas Mixtures (상용 폴리설폰 중공사막의 수소/일산화탄소 혼합가스 분리 성능 평가)

  • Do Hyoung Kang;Kwanho Jeong;Yudam Jeong;Seung Hyun Song;Seunghee Lee;Sang Yong Nam;Jae-Kyung Jang;Euntae Yang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.352-361
    • /
    • 2023
  • Steam methane reforming is currently the most widely used technology for producing hydrogen, a clean fuel. Hydrogen produced by steam methane reforming contains impurities such as carbon monoxide, and it is essential to undergo an appropriate post-purification step for commercial usage, such as fuel cells. Recently, membrane separation technology has been gaining great attention as an effective purification method; in this study, we evaluated the feasibility of using commercial polysulfone membranes for biogas upgrading to separate and recover hydrogen from a hydrogen/carbon monoxide gas mixture. Initially, we examined the physicochemical properties of the commercial membrane used. We then conducted performance evaluations of the commercial membrane module under various conditions using mixed gas, considering factors such as stage-cut and operating pressure. Finally, based on the evaluation results, we carried out simulations for process design. The maximum H2 permeability and H2/CO separation factor for the commercial membrane process were recorded at 361 GPU and 20.6, respectively. Additionally, the CO removal efficiency reached up to 94%, and the produced hydrogen concentration achieved a maximum of 99.1%.

Desulfurization of Sulfur Compounds in City-gas using Metal Salt Impregnated Zeolite (금속이온이 담지 된 제올라이트를 이용한 도시가스 내 부취제 제거)

  • Song, Hirn-Ill;Ko, Chang Hyun;Kim, Jae Chang;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • In hydrogen production for fuel cell by reforming city-gas, sulfur compounds, odorant in city-gas, are detrimental to reforming catalyst and fuel cell electrodes. We prepared metal salt impregnated ${\beta}-zeolite(BEA)$ to remove sulfur compound in city-gas by adsorption. The sulfur breakthrough adsorption capacity was changed depending on the concentration and species of metal salt. $AgNO_3$ impregnated BEA showed the highest sulfur breakthrough capacity among adsorbents used in this experiment(41.1 mg/g). But metal salt impregnated BEA such as $Ni(NO_3)_2/BEA$, $Fe(NO_3_)_3/BEA$, $Co(NO_3)_2/BEA$ showed a certain amount of sulfur adsorption capacity comparable to $AgNO_3/BEA$. Adsorption temperature effect, desorption study, and x-ray photoelectron spectroscopy analysis revealed that the dominant interaction between metal impregnated adsorbent and sulfur compounds was not chemisorption but physisorption.

A Study on Characteristics of Wood Pellet Gasification in Two Stage Gasifier (Two Stage Gasifier에서의 우드펠릿 가스화 특성 연구)

  • Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • In this study, characteristics of wood pellet gasification was studied using a Two Stage Gasifier which is consisted of pyrolysis reactor and ultra high temperature reformer. The average yields of $H_2$, $CH_4$, CO, $CO_2$ were 16.7, 11.3, 37.2, 26.6 L/mim, conversion rate from biomass to gas was 65% in pyrolysis reactor and gas yields in reformer were 55.4, 0.8, 120.8, 56.8 L/mim, respectively. The hydrogen flow rate from reformer is obtained 360.1 L/hr. The most of $CH_4$ was decomposed from 12.3 to 0.3 vol.% while $H_2$ is from 18.2 to 23.7 vol.% in reformer by methane dry reforming, Boudouard reaction, oxidation and/or steam reforming. The amount of $H_2O$ generated by hydration reaction from reformer was 1111.8 g, its accelerated conversion of $CH_4$ to other products. The conversion rate from $CH_4$ to other Compounds was 97.2%. Cold gas efficiency was 53.2%.

CaO Manufacture for $CO_2$ Adsorption at a High Temperature (고온에서의 이산화탄소 흡착을 위한 흡착제 CaO 제조)

  • Lee Tae-Jong;Kim Gil-Soo;Baek Il-Hyun;Kim Bu-Ung
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.27-32
    • /
    • 2001
  • It is desired that carbon dioxide causing a greenhouse effect be removed at a high temperature and high pressure in a steam reforming reaction. In this research, a pellet form of adsorbent CaO is employed to capture $CO_2$. The adsorbent was manufactured using a high pressure molding on powdered $CaCO_3$ followed by calcination. Then its properties were analyzed and the adsorption experiments were carried out in a batch adsorption chamber. The pore area was found to be dependent on a molding pressure and the pore distribution showed two peaks. It is examined that $CO_2$ binds to CaO by means of chemisorption and its maximum conversion is nearly $80\%$ at $700^{\circ}C$.

  • PDF

Challenges and Directions for Reforming Public Records and Archives Act in Korea (공공기록물법 개정을 위한 방향과 과제)

  • Hyun, Moonsoo
    • The Korean Journal of Archival Studies
    • /
    • no.54
    • /
    • pp.289-310
    • /
    • 2017
  • This study aims to propose task areas which have to be discussed for reforming of the Public Records and Archives Act in Korea. For drawing the task areas, it analysed the pending issues mainly presented in the policy forums co-hosted by Korean Society of Archival Studies and Korean Association of Records Managers and Archivists, and examined researches providing tasks of revising of the law or rebuilding public records policies related in digital records management. The 4 task areas were identified, which were the exhaustive documentation of the public agencies' activities, the reexamination of the appraisal systems for public records and archives, the transition into the 2nd generation-digital records management, and the redefinition of roles and responsibilities of the records/archival institutions. Then it placed the issues into the 4 areas, and proposed some suggestions for further discussions in each tasks. Reminding that the task areas proposed in this study are not comprehensive, further suggestions and arguments will be expected for reforming the Public Records and Archives Act.