• Title/Summary/Keyword: $CO_2$ Laser welding

Search Result 201, Processing Time 0.022 seconds

Hybrid Welding Process for Sheet Metal and Narrow Gap Fill Pass (하이브리드 용접방식을 이용한 박판 및 후판용접공정)

  • Choi, Hae-Woon;Shin, Hyun-Myung;Im, Moon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.978-983
    • /
    • 2008
  • An application of innovative laser+GMA hybrid welding process is presented for reducing bead humping defects in high speed welding and increasing side wall fusion in narrow groove welding without torch or wire oscillation. In this hybrid process, the laser heat input is applied adjacent to the weld pool at a relatively low power density to produce a wider, flatter weld bead. In bead on plate in sheet metal gauges, the hybrid process was able to produce hump-free welds from 70ipm (${\sim}1780mm/min$) to over 150ipm (${\sim}3810mm/min$) of the travel speed compared to the un-assisted GMAW process. A square-butt joint in 15mm A572 Gr50 steel welds was investigated. A square butt joint with a gap of 3.2mm was filled with 6 passes. Liquid Nitrogen calorimetry and innovative $CO_2$ laser reflective optics were also developed to demonstrate the concept of hybrid welding.

Production of CO2 Laser Forming Machine for Bending of Sheet Metal Using the FE-Analysis (유한요소해석을 이용한 박판 벤딩용 CO2 레이저 성형기 제작)

  • Ko D.C.;Lee C.J.;Kim B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.319-325
    • /
    • 2006
  • The laser forming process is a new flexible forming process without forming tools and external force, which is applied to various fields of industry. Especially, applications of the laser forming process focused on cutting, welding and marking process. In this paper, the laser bending process of sheet metal which is heated by laser beam and formed by internal stress is simulated by using thermo elastic-plastic analysis model. Based on the result of FE-analysis, the laser bending machine is made to obtain reliable data for sheet bending. Under the same condition as FE-analysis, the laser bending experiment has been performed to ver 펴 the result of FE-analysis and good agreement has been obtained between FE-analysis and experiments. Additional laser bending experiments have been performed to evaluate the laser bending machine.

Multi-kW Fiber Laser (고출력 Fiber Laser)

  • 한유희;전창수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.95-96
    • /
    • 2004
  • 그동안 고출력 레이저에는 CO2 Laser, LPSSL, DPSSL 등이 주로 사용되어 왔다. 최근에는 Fiber Laser가 좋은 빔특성을 가지면서 10㎾이상의 고출력이 가능해 큰 주목을 받고 있다. 고출력 레이저는 매질의 냉각문제가 가장 큰 관건인데, Fiber Laser는 수백 $\mu\textrm{m}$의 지름을 가진 수십m 길이의 공진기 형태를 띠어 부피 대비 냉각면적이 가장 크다고 할 수 있다. EDFA 등 광통신을 위해 개발되었던 다이오드 레이저들이 Fiber Laser쪽으로 전용되고, Side Cladding pumping 방법의 실용화, 다이오드 페이저 펌핑 광과 광섬유사이의 커플링 방법이 개발되면서 고출력 Fiber Laser 개발이 급속히 이루어졌다. (중략)

  • PDF

Evaluation of Fatigue Behavior for Laser Welded High Strength Steel Sheets (SPFC590) (고장력 강판(SPFC590)의 레이저 용접부 피로거동 평가)

  • Heo, Cheol;Kwon, Jong-Wan;Cho, Hyun-Deog;Choi, Sung-Jong;Chung, Woo-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.53-64
    • /
    • 2012
  • Deep and narrow welds can be produced by laser welding at high welding speeds with a narrow heat-affected zone (HAZ) and little distortion of the workpiece. This study aims to evaluate the usefulness of laser welding at automobile component manufacture. Microstructure observation, hardness test, tensile test and fatigue life test are performed by using the fiber laser welded SPFC590 steel sheets which is used widely in the manufacture of automotive seat frame. Three kinds of specimens are only a SPFC590 steel plate, quasi-butt joint plate and lap joint plate by laser welding. The following results that will be helpful to understand the static strength, fatigue crack initiation and growth mechanism were obtained. (1) The tensile strength of quasi butt joint specimens nearly equal to base metal specimens, but lap joint specimens fractured in shear area of weld metal. (2) The fatigue strength of quasi-butt joint specimen was approximately 8 percent lower than that of the base metal specimens. Furthermore, the lap joint specimens were less than 86 percent of the base metal specimens. (3) The lap joint fatigue specimens fractured at shear area in high level stress amplitude, while fractured at normal area in low level stress amplitude. From these results, the applicability of the laser welding to the automobile component is discussed.

The Study of Laser Weldability of two different Metal, Carbon Steel and Sintered Materials, Depends on the Sintered Density (소결밀도에 따른 분말 소결금속과 탄소강의 이종금속 레이저 용접성 고찰)

  • Kim, Yong;Yang, Hyun-Seok;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.8-14
    • /
    • 2008
  • Sintered specimen which used for a blade of diamond tool was manufactured in order to verify $CO_2$ laser weldability depend on sintered temperature. Five kind of specimen were prepared and the range of temperature is from $600^{\circ}C$ to $1000^{\circ}C$ at intervals of $100^{\circ}C$. As a result of the sintered density test, the porosity rate appeared in the range of $2.1%{\sim}21.4%$. After welding, the most segments had exceeds the minimum fracture stress (600MPa, The Standard Safety of Europe) at the welding strength test except on the sintered at $600^{\circ}C$. In case of the sintered at $700^{\circ}C$, even satisfied the safety allowable stress but cannot get the good quality for bead appearance because of humping defect. In the conclusion, we could know that it showed not only relatively soundness bead but also enough welding strength when the sintered blade of diamond tool is included less than 4% of porosity rate.

  • PDF

Reduction Method of Porosity Formed by Instability of Keyhole in High Power $CO_2$ Laser Welding (고출력 $CO_2$레이저 용접에서 키홀의 불안정으로 발생한 기공의 절감방법)

  • 김정일;조민현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.464-471
    • /
    • 2002
  • Porosity formation in partial penetration welds by high power lasers is a serious problem in industry. There are two main causes that induce porosity formation. One form of porosity is due to gases (e.g. hydrogen, oxygen) dissolving into the weld pool because of the high temperature and then the rapid solidification traps gases as a bubble in the weld metal. The second problem is voids formed by the keyhole collapsing due to unstable keyhole fluid dynamics. The voids that form at the bottom of the keyhole are relatively large and irregular in shape compared to the gas bubbles; this void formation is the primary concern in this paper. The reduction of voids formed by keyhole collapse is achieved by improving the stability of keyhole. Two methods to improve keyhole stability are discussed in this paper: pulse modulation and beam incident angle. Pulse modulation of the laser beam was performed between 100 Hz and 500 Hz to find out the optimum frequency for the keyhole dynamics. The incident beam angle changed the impact angle of the laser beam to the work surface in a range of 0 to 25 degrees. Glycerin in a semi-solidified state is used as a medium for performing the welding because its transparency allows of visualization of the keyhole.

Laser Cutting Characteristics of Cold Rolled Steel Sheets (레이저를 이용한 박강판의 절단특성)

  • 이기호;김기철;이종훈
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.113-121
    • /
    • 1995
  • This study deals with the quality and the optimum range of laser cutting process. Cold rolled steel sheets for automobile application were cut by a high power CO$_{2}$ laser system with beam quality of TEM$_{\infty}$ mode. Both process parameters such as travel speed and assist gas pressure, and quality factors were considered to optimize the laser cutting. It was revealed that the thinner the sheet thickness, the less effect of oxidation energy for contributing the cutting process. High speed photographs demonstrated that molten spot on the cut surface moved in a random and vigorous manner according to its viscosity and the flowing direction of assist gas, which resulted in so called striation. Laser cutting produced a very smooth surface of average roughness(Ra) about less than 1.5.mu.m at the optimum range. It was also shown that the characteristics of dross formation was influenced by the flowing durection of assist gas and the fluidity of molten metal drop..

  • PDF

Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser (저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

A Study on Cladding using the $CO_2$ Laser ($CO_2$레이저 클래딩)

  • 윤상원;강영주;김재도
    • Proceedings of the KWS Conference
    • /
    • 1996.10a
    • /
    • pp.186-190
    • /
    • 1996
  • Laser cladding is a technique for modification on surface in materials. This study describes a laser cladding equipment design and the results of laser cladding nickel on rolled steel for general structure. The laser clsdding equipment designed to consider continuous supply, a fixed quantity. The material used MC plastic. Laser cladding condition is found out by processing parameters. The experiment advanced to suppy substrate with powder. The substrate is rolled steel for general structure(KS D 3503) and powder is using the nickel powder for the corrosion resitance, wear resistance and surface hardness of materials. When the substrate travel on X-Y table, laser beam irradiates to prevent from oxidize with shielding gas on it. The obtained specimens measure the victors hardness test. For the research laser cladding results make a comparative study the microstructure.

  • PDF

Effect of Process Parameters on Laser Overlay Behavior of Fe-based Alloy Powder on Aluminum Substrate (공정 변수에 따른 Al 모재와 Fe계 합금 분말의 레이저 오버레이층 거동)

  • Yoo, Yeon-Gon;Kang, Nam-Hyun;Kim, Cheol-Hee;Kim, Jeong-Han;Kim, Mok-Soon
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.30-36
    • /
    • 2007
  • A joining of dissimilar metal combination faces significant problems such as poor strength and cracking associated with brittle intermetallic compounds(IMC) formed. An application of laser allows low heat input; leading to less dilution and smaller heat affected zone. The $CO_2$ laser overlay was conducted on an AC2B alloy with feeding Fe-based powders. The overlay area was significantly influenced from the travel velocity rather than the powder feeding rate. The interface between the overlay and substrate consisted of the hard and brittle IMC($FeAl_3,\;Fe_3Al,\;Fe_2Al_5$), which initiating and propagating the crack. The reciprocating test for the slide wear was conducted on a multi-pass overlay experiment. Comparing with the multi-pass overlay with no overlap, the overlay with 50% overlap showed better wear resistance.