• 제목/요약/키워드: $CO_2$ Emissions

검색결과 1,455건 처리시간 0.025초

울산지역 대기오염 공간분포 (Spatial Distribution of Air Pollution in the Ulsan Metropolitan Region)

  • 오인보;방진희;김순태;김은혜;황미경;김양호
    • 한국대기환경학회지
    • /
    • 제32권4호
    • /
    • pp.394-407
    • /
    • 2016
  • The spatial air pollution distribution of the Ulsan metropolitan region (UMR) was analyzed using monitoring data and high-resolution numerical simulations. A three-year (2011~2014) analysis for the average concentrations from the 13 air quality monitoring sites in the UMR showed that $SO_2$ and $PM_{10}$ levels in industrial regions were much higher than those in other regions, whereas spatial differences of $NO_2$ and CO concentrations were not significant. In particular, elevated $O_3$ concentrations were clearly found at urban sites near petrochemical complex area. Results from high-resolution simulations by CMAQ model performed for four months of 2012 showed large spatial variations in grid-average pollutant concentrations between industrial areas and other areas in the UMR, which displayed significant changes with wind pattern by season. It was noted that the increases of $SO_2$ and $PM_{10}$ levels were limited in costal industrial areas or over the area nearby the sea in all seasons. Modeled $O_3$ concentrations were quite low in industrial areas and main urban roads with large $NO_x$ emissions. However, the model presented that all pollutant concentrations were significantly increased in the urban residential areas near the industrial complexes in summer season with increase of southerly wind.

Comparison of Formaldehyde Emission of Wood-based Panels with Different Adhesive-hardener Combinations by Gas Chromatography and Standard Methods

  • Eom, Young Geun;Kim, Sumin;Baek, In-Chan;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권2호통권130호
    • /
    • pp.29-39
    • /
    • 2005
  • Formaldehyde emissions from wood-based panels bonded with pine and wattle tannin-based adhesives, urea-formaldehyde resin (UF), melamine-formaldehyde resin (MF), and co-polycondensed resin of urea-melamine-formaldehyde (UMF) were measured by the Japanese standard method using a desiccator (JIS A 1460) and the EN 120 (European Committee For Standardization, 1991) method using the perforator value. In formaldehyde emission, all particleboards made using the wattle tannin-based adhesive with three different hardeners, paraformaldehyde, hexamethylenetetramine, and tris(hydroxyl)nitromethan (TN), satisfied the requirements of grade $E_1$. But only those made using the pine tannin-based adhesive with the hexamine as hardener met the grade $E_1$ requirements. Hexamine was effective in reducing formaldehyde emission in tannin-based adhesives when used as the hardener. While the UF resin showed a desiccator value of $7.1mg/{\ell}$ and a perforator value of 12.1 mg/100 g, the MF resin exhibited a desiccator value of $0.6mg/{\ell}$ and a perforator value of 2.9 mg/100 g. According to the Japanese Industrial Standard and the European Standard, the formaldehyde emission level of the MDF panels made with UF resin in this study came under grade $E_2$. The formaldehyde emission level was dramatically reduced by the addition of MF resin. The desiccator and perforator methods produced proportionally equivalent results. Gas chromatography, a more sensitive and advanced method, was also used. The samples for gas chromatography were gathered during the experiment involving the perforator method. The formaldehyde contents measured by gas chromatography were directly proportional to the perforator values.

Mitigating $CH_4$ Emissions in Semi-Aerobic Landfills: Impacts of Operating Conditions on Abundance and Community Structure of Methanotrophs in Cover Soils

  • Li, Huai;Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.993-1003
    • /
    • 2013
  • Methanotrophs are the most important sink of $CH_4$, which is a more highly potent greenhouse gas than $CO_2$. Methanotrophic abundance and community diversity in cover soils from two typical semi-aerobic landfills (SALs) in China were detected using real-time polymerase chain reaction (real-time-PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA genes, respectively. Real time-PCR showed that Type I methanotrophs ranged from $1.07{\times}10^6$ to $2.34{\times}10^7$ copies/g soil and that of Type II methanotrophs from $1.51{\times}10^7$ to $1.83{\times}10^8$ copies/g soil. The ratio of Type II to Type I methanotrophic copy numbers ranged from 5.61 to 21.89, indicating that Type II methanotrophs dominated in SAL. DGGE revealed that Type I methanotrophs responded more sensitively to the environment, changing as the community structure varied with different soil types and locations. Methylobacter, Methylosarcina, and Methylomicrobium for Type I, and Methylocystis for Type II were most prevalent in the SAL cover layer. Abundant interflow $O_2$ with high $CH_4$ concentration in SALs is the reason for the higher population density of methanotrophs and the higher enrichment of Type II methanotrophs compared with anaerobic landfills and other ecosystems, which proved a conclusion that increasing the oxygen supply in a landfill cover layer would greatly improve $CH_4$ mitigation.

자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구 (A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System)

  • 이진욱;조규백;김홍석;정용일
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

대학 캠퍼스의 에너지 소비 실태 조사를 통한 탄소 인센티브 제도 연구 (A Study on Carbon Incentive System Based on Investigation of Energy Consumption in Korean Universities)

  • 김경수;신문수;구자건
    • 한국환경교육학회지:환경교육
    • /
    • 제23권2호
    • /
    • pp.65-81
    • /
    • 2010
  • Universities which have taken an important role to develop the human resources, became one of emitters of greenhouse gases, they need to find a way to reduce global warming gases through reduction of energy consumption. This study is intented to propose a solution that can reduce the greenhouse gases at universities located in Korea. To conduct this study, we have chosen a university at Wonju in Kangwon province for a case study and investigated the emissions of carbon dioxide from campus facilities and residential area. The data has become a footstone to estimate the assumed amount of carbon emission for top 23 energy consumption universities in Korea. We calculate the amount for carbon emission, not only for facilities in campus, but also for residential buildings, amount for emission is increased severely by showing $9780.94tCO_2$, which is 2.1 times more than average amount for emission of greenhouse gases researched in existing statistics. Universities have difficulty in introducing new energy generation system, as having been done business companies or other commercial facilities but they are required to introduce some educational methods since it is a academic space. Incentive to universities reducing carbon emission in campus is a system to provide incentives with students, professors, administrative personnels and others in campus as a compensation for their efforts to save energy. It is needed to establish the infrastructures for measuring energy consumption in campus.

  • PDF

산-염기형 PEEK와 PSf를 이용한 고체 고분자전해질 복합막의 가교화 (Cross-linking of Acid-Base Composite Solid Polymer Electrolyte Membranes with PEEK and PSf)

  • 장인영;장두영;권오환;김경언;황갑진;심규성;배기광;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.149-157
    • /
    • 2006
  • Hydrogen as new energy sources is highly efficient and have very low environmental emissions. The proton exchange membrane fuel cell (PEMFC) is an emerging technology that can meet these demands. Therefore, the preparation of stable polymeric membranes with good proton conductivity and durability are very important for hydrogen production via water electrolysis with PEM at medium temperature above $80^{\circ}C$. Currently Nafion of Dupont and Aciflex of Asahi, etc., solid polymer electrolytes of perfluorosulfonic acid membrane, are the best performing commercially available polymer electrolytes. However, these membrane have several flaws including its high cost, and its limited operational temperature above $80^{\circ}C$. Because of this, significant research efforts have been devoted to the development of newer and cheaper membranes. In order to make up for the weak points and to improve the mechanical characteristics with cross -linking, acid-base complexes were prepared by the combination PSf-co-PPSS-$NH_2$ with PEEK-$SO_3H$. The results showed that the proton conductivity decreased in 17.6% and 40% but tensile strength increased in 78% and 98%, about $20.65\;{\times}\;10^6N/m^2$, in comparison with SBPSf/HPA and SPEEK/HPA complex membrane.

HCNG 엔진용 연료시스템의 적용성 평가 (Applicability of Fuel Supply System for HCNG Engine)

  • 이성원;임기훈;박철웅;최영;김창기;이장희
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.146-153
    • /
    • 2013
  • CNG buses has contributed to improve air quality in cities. But it is difficult to meet the next emission regulations such as EURO-VI without the help of additional post-processing device. Hydorgen has higher flame speed and lower combustion temperature that make it thermal efficiency increase with leaner operation. Using hydrogen natural gas blend (HCNG) fuel is promising technology which can reduce $NO_x$ and $CO_2$ emissions for a natural gas vehicle. However, fuel flow rate of HCNG should be increased since hydrogen's energy density per volume is much smaller than natural gas. In the present study, the characteristics of fuel supply system and its applicability were evaluated in a heavy duty natural gas engine. The results showed that the potential of fuel pressure regulator and fuel metering valve had enough capacity with HCNG. Employed mixer did not affect the distribution characteristics of mixture.

Active Distribution System Planning for Low-carbon Objective using Cuckoo Search Algorithm

  • Zeng, Bo;Zhang, Jianhua;Zhang, Yuying;Yang, Xu;Dong, Jun;Liu, Wenxia
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.433-440
    • /
    • 2014
  • In this study, a method for the low-carbon active distribution system (ADS) planning is proposed. It takes into account the impacts of both network capacity and demand correlation to the renewable energy accommodation, and incorporates demand response (DR) as an available resource in the ADS planning. The problem is formulated as a mixed integer nonlinear programming model, whereby the optimal allocation of renewable energy sources and the design of DR contract (i.e. payment incentives and default penalties) are determined simultaneously, in order to achieve the minimization of total cost and $CO_2$ emissions subjected to the system constraints. The uncertainties that involved are also considered by using the scenario synthesis method with the improved Taguchi's orthogonal array testing for reducing information redundancy. A novel cuckoo search (CS) is applied for the planning optimization. The case study results confirm the effectiveness and superiority of the proposed method.

건물용 연료전지-보일러 복합설치 안전성능 평가에 관한 연구 (A Study on the Assessment of Safety Performance for Complex Installation System of Stationary Fuel Cell and Boiler)

  • 김민우;이은경;오건우;이정운;이승국
    • 한국위험물학회지
    • /
    • 제6권2호
    • /
    • pp.77-86
    • /
    • 2018
  • Interest in renewable energy is increasing for eco-friendly use of energy, and fuel cells are being used in various ways such as houses and buildings as power generation methods that have low emissions such as $NO_X$ and $CO_2$. As the supply of fuel cells expands, more and more boilers are installed in the existing buildings, but safety management is not being performed properly. Therefore, in this study, a prior study was conducted on the status of fuel cell-boiler complex installation and related criteria, and the risk factors were analyzed according to the installation environment and structure. Based on these standards, the safety performance of the fuel cell-boiler combined installation is assessed by conducting a demonstration using the starting product of the simulated operation to derive the installation criteria (proposal) for the fuel cell-boiler combined installation. The installation criteria (proposal) include the construction and connection method of the piping according to the fuel cell-boiler complex installation.

CDM사업을 대상으로 한 국내 온실가스 상쇄배출권의 잠재량 산정 및 정책 제언 (Analyzing the Potential of Offset Credits in the Korean Emission Trading Scheme Focusing on Clean Development Mechanism Projects)

  • 김우리;손요환;이우균;조용성
    • 한국기후변화학회지
    • /
    • 제9권4호
    • /
    • pp.453-460
    • /
    • 2018
  • The purpose of this study is to analyze the potential quantity of Korean Offset Credits (KOC) resulting from Certified Emission Reductions (CER) in 98 domestic Clean Development Mechanism (CDM) projects that were registered with the United Nations Framework Convention on Climate Change (UNFCCC) as of the end of 2016. Our results show that the total amount of potential KOC is 62,774 kt CO2eq. The potential KOC is only 23.4% of the total CER Issuance. During the first phase, this will be 3.2% of the allocated volume. This is because many projects are related to Renewable Portfolio Standard (RPS), HFC-23, and adipic acid N2O. There is a strong bias in some sectors and projects which could act as market distortion factors. Therefore, it is necessary to expand the target CDM project and activate non CDM offset projects. RPS projects bring fundamental changes to the energy sector, and it is worth reconsidering their acceptability. A wide variety of policy incentives are needed to address strong biases toward certain sectors and projects. The offset scheme has the advantage of allowing entities to reduce their GHG emissions cost effectively through a market mechanism as well as enabling more entities to participate in GHG reduction efforts both directly and indirectly. In contrast, having an inadequate offset scheme range and size might decrease the effort on GHG reduction or concentrate available resources on specific projects. As such, it is of paramount importance to design and operate the offset scheme in such a way that it reflects the situation of the country.