• Title/Summary/Keyword: $CO_2$ Carbonation

Search Result 259, Processing Time 0.03 seconds

Carbonation of a few of Common materials which can fix CO2 (상용 CO2고정재료의 탄산화에 관한 문헌적 연구)

  • Chen, zheng-xin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.47-48
    • /
    • 2016
  • Mineral carbonation technology is a process whereby CO2 is chemically reacted with calcium-and/or magnesium-containing minerals to form stable carbonate materials. Add the Materials that could fix CO2 as mineral admixture to concrete can improve the anti-carbonation properties of concrete. This paper has carried on the literature research on the carbonated mechanism of Material that could fix carbon dioxide. Such as Brucite, 𝜞-C2S, Mg2SiO4, MgO, Ca3MgSi2O8. And summarizes the development of the development of this field.

  • PDF

Evaluating the Effectiveness of In-Situ Carbonation in Floor Dry Cement Mortar Applications (바닥용 건조시멘트 모르타르 배합 내 In-situ 탄산화 적용을 위한 CO2 주입 특성 및 물리적 특성 검토)

  • Kim, Jin-Sung;Cho, Sung-Hyun;Kim, Chun-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In-situ carbonation technology represents a form of mineral carbonation that integrates CO2 into the fabrication process of cementitious construction materials, capturing CO2 as calcium carbonate(CaCO3) through a reaction between calcium ions(Ca2+) and CO2 released during cement hydration. This investigation examines the application of in-situ carbonation technology to a variety of floor dry cement mortar formulations commonly used in local construction projects. It assesses the effects of varying the CO2 injection flow rate and total volume of CO2 injected. Additionally, the study evaluates the impact of reducing the quantity of cement used as a binder on the final product's quality.

A Fundamental Study on CO2 Sequestration of Concrete Slurry Water by Pressure Carbonation (가압 탄산화를 통한 레미콘 회수수의 CO2 고정화에 관한 기초적 연구)

  • Sim, Sang-Rak;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.107-108
    • /
    • 2023
  • In this study, in CO2 sequestration was carried out through pressure carbonation for concrete slurry water to realize carbon neutrality in the cement industry. As a result of the experiment, it was confirmed that as the pressure of CO2 increased, the pH decreased and the amount of CaCO3 produced increased. However, despite the CO2 pressure of 5 bars, the carbonation reaction for 10 minutes alone did not proceed completely.

  • PDF

Prediction of Carbonation Process in Concrete (콘크리트 중성화 진행의 예측)

  • 고경택;김성욱;김도겸;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.767-770
    • /
    • 1999
  • The carbonation process is affected both by the concrete material properties such as W/C ratio, types of cement and aggregated, admixture characteristics and the environmental factors such as CO2 concentration, temperature, humidity. Based on results of preliminary research on carbonation, this study is to propose a carbonation prediction model by taking into account of prediction model by taking into account of CO2 concentration and W/C ratio among major factors affecting the carbonation process.

  • PDF

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.

Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation (산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구)

  • Jung, Seong-Myung;Nam, Seong-Young;Um, Nam-Il;Seo, Joobeom;Yoo, Kwang-Suk;Ohm, Tae-In;Ahn, Ji-Whan
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

Mineral Carbonation of High Carbon Dioxide Composition Gases Using Wollastonite-distilled Water Suspension (규회석-증류수 현탁액을 이용한 고농도 CO2 가스의 탄산염 광물화)

  • Song, Haejung;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.342-351
    • /
    • 2014
  • The present paper investigates the performance of direct wet mineral carbonation technology to fix carbon dioxide ($CO_2$) from relatively high $CO_2$ concentration feeding gas using wollastonite ($CaSiO_3$)-water (and 0.46 M acetic acid) suspension solution. To minimize the energy consumed on the process, the carbonation in this work is carried out at atmospheric pressure and slightly higher room temperature. As a result, carbon fixation is confirmed on the surface of $CaSiO_3$ after carbonation with wollastonite-water suspension solution and its amount is increased according to the $CO_2$ composition in the feeding gas. The leaching and carbonation ratio of wollastonite-water suspension system obtained from the carbonation with 50% of $CO_2$ composition feeding gas is 13.2% and 10.4%, respectively. On the other hand, the performance of wollastonite-acetic acid in the same condition is 63% for leaching and 1.39% for carbonation.

A Study on the Reaction Characteristics of $CO_2$ Mineral Carbonation by Using Serpentine (Serpentine을 이용한 $CO_2$ 미네랄 탄산염화 반응 특성에 관한 연구)

  • 이대환;김형택;최병철;최봉국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.679-684
    • /
    • 2003
  • 급속한 경제성장과 산업발달로 인해 국내외 에너지 소비량은 매년 크게 증가하고 있으며 이에 따라 화석연료의 사용도 증가하는 추세이다. 연소반응을 통한 화석연료의 사용은 GHG 중 가장 큰 요인인 $CO_2$를 배출한다. 따라서 막대한 양으로 배출되고 있는 $CO_2$ 발생을 억제하기 위하여 다양한 이산화탄소 고정화 기술이 연구 중에 있다. 그 중에서 경제성이 있고, 환경친화적이며 대량의 $CO_2$를 안정적이고 영구적으로 처리할 수 있는 기술로 주목되고 있는 연구가 광물질을 이용한 $CO_2$ 미네랄 Carbonation 처리기술에 대하여 반응특성을 고찰하였다. 대상 광물질로 Ca 보다 $CO_2$ 처리 시 친화적인 것으로 알려진 Mg가 많이 함유된 Silicate 계열의 사문석(Serpentine[Mg$_3$Si$_2$O$_{5}$(OH)$_4$])을 대상으로 Carbonation 반응특성을 실험을 통하여 고찰하였다. 실험은 TGA를 이용한 분석실험과 200cc 급 Autoclave를 이용한 $CO_2$의 직접주입실험을 수행하였다. TGA분석과 200cc 급 Autoclave를 이용한 실험을 통해서 Serpentine 의 경우 실험에서 정한 운전조건에서 $CO_2$와의 Carbonation 반응에 적합한 물질로 판단된다는 결론을 도출하였다.

  • PDF

A Study on the Carbonation Characteristics of Fly Ash Concrete by Accelerated Carbonation Test (급속 촉진 탄산화 시험을 통한 플라이애쉬 콘크리트의 탄산화 특성 연구)

  • Choi, Sung;Lee, Kwang-Myong;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2009
  • The increase of industrial carbonic dioxide emissions has accelerated the carbonation of reinforced concrete structures, which drops off their durability. Although advanced countries have already taken safety control measures against the carbonation of RC structures, it is still difficult now to accurately predict the actual carbonation depth. Additionally, it requires much time and efforts. Recently, it is possible to get the data more rapidly through accelerated carbonation test with the $CO_2$ concentration of 100%. In this paper, the carbonation test results obtained by two test methods such as the normal carbonation test method and the accelerated carbonation test method, were compared to investigate the carbonation characteristics of fly ash concrete. The accelerated carbonation test on concrete specimens with the pre-curing age of 180 days was also carried out to examine the carbonation characteristics of fly ash concrete at long-term age. Consequently, fly ash concrete at early age was vulnerable to carbonation and however, its carbonation resistance at long-term ages was improved compared with OPC concrete.

A study on the Effect of Alkali-admixture on Compressive Strength and Carbonation properties of Geopolymer paste (알칼리 자극제가 지오폴리머 페이스트의 압축강도와 탄산화 특성에 미치는 영향에 관한 연구)

  • Yoon, Chang-Bok;Park, Jang-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.187-188
    • /
    • 2022
  • In this study, the compressive strength and carbonation properties of geopolymer paste according to the amount of alkali admixture added were evaluated for the development of geopolymer concrete that recycles industrial waste. A geopolymer paste specimen was prepared using Ca(OH)2 as an admixture, and the prepared specimen was standard cured for 28 days. After curing, the compressive strength of the specimen was measured. As the amount of alkali admixture increased, the compressive strength increased. After curing, carbonation was carried out for 7 days in a CO2 5% environment. As a result of comparative evaluation of the amount of CaCO3 produced according to carbonation, the amount of CaCO3 produced increased as the amount of Ca(OH)2 added increased. However, when the amount of admixture added exceeds 5%, the increase rate decreases, so the optimum addition rate is considered to be 5%.

  • PDF