• Title/Summary/Keyword: $CO_2$ Carbonation

Search Result 259, Processing Time 0.025 seconds

Capture of Carbon Dioxide Emitted from Coal-Fired Power Plant Using Seawater (해수를 이용한 석탄 화력발전소의 이산화탄소 포집 연구)

  • Han, Sang-Jun;Kim, Dae-Kyeong;Lee, Jae-Hee;Park, Sang-Hyeok;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.340-349
    • /
    • 2013
  • The present paper investigates the availability of seawater as the absorbents to capture carbon dioxide ($CO_2$) emitted from the coal fired power plant (CFPP). For the purpose of the study, readily obtainable alkali materials in CFPP such as coal fly ash (FA), NaOH and $Ca(OH)_2$ are added to seawater to prepare the absorbents and their $CO_2$ capture performances are discussed. FA can be effectively used the additives to increase $CO_2$ capture capacity of seawater to a some extent. This is ascribed that some alkali components in FA are leached into seawater and they contribute to $CO_2$ capture in the solution. However, their leaching amount and rate are restricted by the various ions in seawater. The performance of NaOH added seawater is even lower than that of NaOH added water because $OH^-$ is substantially consumed on $Ma(OH)_2$ production prior to carbonation. $CO_2$ absorption capacity of $Ca(OH)_2$ added seawater is slightly larger than that of $Ca(OH)_2$ added water. This is because that $Ca^{2+}$ which originally present in raw seawater can participate in carbonation reaction.

Studies on the Preparation of Aragonite (Ⅱ): Formation of Pillar Aragonite by the Carbonation of Slake Lime Suspension (Aragonite의 제조에 관한 연구 (Ⅱ) 소석회 현탁액의 탄산화반응에 의한 주상형 아라고나이트 생성)

  • Park, Seong Sik;Lee, Hee Cheol;Jun, Sang Moon
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.11
    • /
    • pp.869-877
    • /
    • 1995
  • Carbonation process of Jung sun slake lime$(Sr(OH)_2=0.053 wt%)$ suspension with $CO_2$ gas at 30∼80$^{\circ}C$ has been studied to investigate the formation process of aragonite. The reaction temperature at above $50^{\circ}C$, rhombic nuclei of $SrCO_3$ has been grown with the interaction of $CO_3^{2-}$(aq) which is profitable to growth the nuclei at the liquid film of gas-liquid interface to form pillar aragonite crystal. At $40^{\circ}C$, the controlling of concentration of $CO_2$(aq) at the beginning of the reaction has been made the nuclei to growth to be an aragonite crystal. Addition of some $Sr(OH)_2$ to Yi Lee slake lime $(Sr(OH)_2=0.011 wt%)$ suspension and controlling the concentration of $OH^-$(aq) and $CO_2$(aq), the carbonation reaction produced pillar aragonite crystal with the short side of 0.1∼0.2 ${\mu}m$ and long side of 1∼2 ${\mu}m.$

  • PDF

Techno-Economic Study on Non-Capture CO2 Utilization Technology

  • Lee, Ji Hyun;Lee, Dong Woog;Kwak, No-Sang;Lee, Jung Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.109-113
    • /
    • 2016
  • Techno-economic evaluation of Non-Capture $CO_2$ Utilization (NCCU) technology for the production of high-value-added products using greenhouse gas ($CO_2$) was performed. The general scheme of NCCU process is composed of $CO_2$ carbonation and brine electrolysis process. Through a carbonation reaction with sodium hydroxide that is generated from brine electrolysis and $CO_2$ of the flue gas, it is possible to get high-value-added products such as sodium bicarbonate, sodium hydroxide, hydrogen & chloride and also to reduce the $CO_2$ emission simultaneously. For the techno-economic study on NCCU technology, continuous operation of bench-scale facility which could treat $2kgCO_2/day$ was performed. and based on the key performance data evaluated, the economic evaluation analysis targeted on the commercial chemical plant, which could treat 6 tons $CO_2$ per day, was performed using the net present value (NPV) metrics. The results showed that the net profit obtained during the whole plant operation was about 7,890 mKRW (million Korean Won) on NPV metrics and annual $CO_2$ reduction was estimated as about $2,000tCO_2$. Also it was found that the energy consumption of brine electrolysis is one of the key factors which affect the plant operation cost (ex. electricity consumption) and the net profit of the plant. Based on these results, it could be deduced that NCCU technology of this study could be one of the cost-effective $CO_2$ utilization technology options.

Influence of curing condition and carbonation on electrical resistivity of concrete

  • Yoon, In-Seok;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.973-987
    • /
    • 2015
  • The electrical resistivity of air-dried, saturated, and carbonated concretes with different mixture proportions was monitored to evaluate and quantify the influence of the age of the specimen, carbonation, and curing condition. After 28 days of curing, four prepared specimens were stored in a vacuum chamber with 5% $CO_2$ for 330 days to make carbonated specimens. Four of the specimens were placed in water, and four specimens were cured in air until the end of the experiments. It was observed that the electrical resistivity of the carbonated specimens increased as carbonation progressed due to the decrease of porosity and the increase of hydrated products. Therefore, in order to estimate the durability of concrete, its carbonation depth was used as the measurement of electrical resistivity. Moreover, an increase of electrical resistivity for air-dried and saturated concretes was observed as a function of age of the specimen. From the relationship between chloride diffusivity provided by Yoon et al. (2007) and the measurements of electrical resistivity, it is expected that the results well be of significant use in calibrating chloride diffusivity based on regular measurements of electrical resistivity during concrete construction.

Manufacturing Properties and Hardening Characteristic of CO2 Reactive Hardening Cement (이산화탄소 반응경화 시멘트 제조 및 경화특성 연구)

  • Ki-Yeon Moon;Byung-Ryeol Kim;Seung-Han Lee;Moon-Kwan Choi;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.52-59
    • /
    • 2022
  • Calcium silicate based cement (CSC) is a low-carbon cement that emits less CO2 by up to 70% compared to ordinary Portland cement during its manufacture. Most developed countries have commercialized CSC, whereas Korea is still investigating the manufacturing characteristics and basic properties of CSC. This paper provides a review of methods for manufacturing CSC using domestic raw materials and discusses the possibility of CSC localization based on an evaluation of the basic physical properties of manufactured CSC. The experimental results of this study indicate that the primary mineral components of CSC were CS, C3S2 C2S, and unreacted SiO2. This suggests the possibility of manufacturing CSC using domestic raw materials that exhibit mineral compositions similar to that of theoretical CSC. The compressive strength of CSC mortar is less than 1MPa at the age of 7 d under wet curing. This implies that hydration does not affect the property development of CSC mortar. Meanwhile, during carbonation curing, the compressive strength is 56 MPa or higher after 7 d, which indicates excellent early strength development. Furthermore, results of Thermogravimetric Analysis Differential scanning calorimetry (TG/DSC) show that a significant amount of CaCO3 is formed, which is consistent with the results of previous studies. This implies that carbonation is associated significantly with the properties of CSC.

Durability Analysis of Underground Structure based on Limit State Function Considering Carbonation (탄산화 기반의 한계상태함수를 활용한 지하구조물의 내구성 평가)

  • Choo, Jin-Ho;Lee, Tae-Jong;Yoon, Tae-Gook;Lee, Sang-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.69-75
    • /
    • 2014
  • The priority of repair areas are chosen with the probability distribution of 0.3mm wide crack and carbonation induced corrosion. Data is analyzed and evaluated based on the 28 section of Precise Inspection for Safety and Diagnosis (PISD) in seoul. As the crack is distributed in log-normal, the carbonation and cover are in normal distribution. To have rational in repair sections among 503 sheets of underground structure, it is adopted the reliability index as well as the environment factors: strength, sonic speed, $CO_2$ concentration, corrosion, and content of chloride.

The Prediction model of Carbonation Process Using the Air Permeability Coefficient for Concrete (콘크리트의 투기계수를 이용한 중성화진행 예측모델)

  • Lim, Chang-Hyuck;Kim, Gyu-Yong;Lee, Tae-Gyu;Lee, Eui-Bae;Didolkar, Rahul B.;Kang, Suk-Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.221-222
    • /
    • 2010
  • In this study an expression is obtained the model equation for the prediction of carbonation based on the time and interaction velocity between $CO_2$ and $Ca(OH)_2$ diffusion coefficient.

  • PDF

Property enhancement of lightweight aggregate by carbonation processing (인공경량골재의 탄산화 반응에 따른 물성향상에 관한 연구)

  • Park, Junyoung;Kim, Yootaek;Choi, Yunjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.254-259
    • /
    • 2012
  • The mechanical property enhancement was studied using fly ash produced from fluidized bed type boiler in power plant, which contains a lot of Ca component being used to carbonate for $CO_2$ fixation in the lightweight aggregates made of cement and some portion of fly ash as a cement substitution under the supercritical condition. Specimens having various fly ash substitution rates and curing periods were carbonated under the supercritical condition at $40^{\circ}C$. The weight change rate, carbonation rate by TG/DTA analysis, 1% Phenolphthalein test, specific gravity and mechanical compression strength test were performed to observe the mechanical property enhancement of the cemented materials after carbonation under the supercritical condition and to make sure those could be classified as lightweight aggregates having specific gravity under 2.0.

Crystallographic and Spectroscopic Characterization of Talc proposed Mineral Carbonation after Heat Treatment (탄산염광물화용 활석의 열처리에 따른 결정학적 분광학적 특성변화)

  • Choi, Weon-Kyung;Cho, Tae-Hwan;Lee, Jae-Keun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.109-116
    • /
    • 2006
  • The heat treatment characteristics of natural talc sample was investigated in diverse analytical view point. The mass decrease comes to heat treatment was resulted by the continuous and the discontinuous process and the obtained result show very similar two step profiles with 8.9 % mass decrease. The dehydroxylation of -OH groups contained talc crystal was analyzed by spectroscopic method and the crystallographic variations was also observed after heat treatment. According to XPS result, the magnesium hydroxide($Mg(OH)_2$) of untreated talc powder changed to magnesium oxides(MgO) after heat treatment.