• Title/Summary/Keyword: $CO_2$ 흡착제

Search Result 153, Processing Time 0.024 seconds

$CO_2$ removal system by dry sorbent for passenger train (건식 흡착제를 이용한 차량용 이산화탄소 저감장치 개발)

  • Cho, Yong-Dae;Lee, Ju-Yeol;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1735-1739
    • /
    • 2008
  • Malfunction or inappropriate management of ventilation system in public transportation may cause unpleasant atmosphere or health problems to the old or feeble passengers. In this work, gaseous carbon dioxide removal system is developed and tested under the various serviced passenger cabins. Finally an optimum operating conditions for the $CO_2$ removal system will presented.

  • PDF

ONIOM study on CO2 adsorptions and conversions on BN-BNNT sidewalls (BN-결함 질화붕소 나노튜브(BN-BNNT) 벽면에서의 CO2 흡착/전환 반응에 대한 ONIOM 계산 연구)

  • Choe, Hui-Cheol;Park, Yeong-Chun;Kim, Yong-Hyeon;Lee, Yun-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.216-217
    • /
    • 2012
  • QM/MM 혼성 이론 방법인 ONIOM 계산을 통해, $CO_2$$B_N$-BNNT 벽면에서의 흡착 반응과 $H_2CO_3$로의 전환 반응 메커니즘을 규명함으로써 $B_N$-BNNT가 효과적인 $CO_2$ 흡착제와 $H_2CO_3$ 생성 반응 촉매로 개발 가능함을 확인하였다.

  • PDF

Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent (3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.541-548
    • /
    • 2009
  • Iron coated media (activated carbon, sand and starfish) were prepared at pH 4 and applied for the treatment of landfill leachate containing organic compounds and soluble metal ions such as $Zn^{2+},\;Cu^{2+},\;Mn^{2+}$ in batch and column experiment. The amount of iron coated in media was analyzed with EPA 3050B method. The removal efficiency of metal ions and phenol was compared with iron coated media. The amount of iron coated in Fe-AC and ICS(iron coated sand) were 1,612 mg/kg and 1,609 mg/kg, respectively, while it was higher with 1,768 mg/kg in ICSF(iron coated starfish). The result of batch study represent the highest removal efficiency in the treatment of wastewater using iron coated starfish. In column study, the removal efficiency of phenol and metal ions was higher in multi-layered system of ICS, Fe-AC and ICSF compared to single layered system. Breakthrough time in the effluent was relatively enhanced for $Cu^{2+}$ and $Zn^{2+}$ in multi-layered system while the removal efficiency of $Mn^{2+}$ were not varied much. Therefore, multi-layered system was identified as the better system for the treatment of wastewater containing of metal ions and organic compound.

메조포러스 Xerogels의 톨루엔 흡착특성

  • Son, U-Jeong;Kim, Yun-Gap;Choe, Seong-U
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.113-114
    • /
    • 2006
  • VOCs의 제어를 위하여 흡착법이 널리 사용되는데 흡착제로서 다공성 탄소가 가장 뛰어남을 보여준다. 이를 resorcinol-formaldehyde과 $Na_2CO_3$으로 졸-겔법으로 메조포러스 xerogels을 제조하고 VOCs의 대표적인 물질인 톨루엔을 흡착시켜 흡착효율을 연구한 결과 흡착효율이 뛰어남을 알 수 있었다.

  • PDF

Study on development of Smart ventilation system using a adsorbent for the removal of CO2 (CO2 제거용 흡착제를 이용한 스마트 환기시스템 개발 연구)

  • Shin, Jae-Ran;Moon, Sung-Ho;Kim, Jae-Kang;Choi, Jin-Sik;Lim, Yun-Hui;Park, Byung-Hyun;Lee, Ju-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.578-582
    • /
    • 2015
  • In this study, We evaluated the efficiency of the smart ventilation system being developed at the test-bed(KCL). Smart ventilation system improve the indoor air quality by absorbing carbon dioxide. It is reducing the infusion of outside air can be reduced to minimum energy consumption. To evaluate the energy savings and carbon dioxide removal efficiency. It was more effective when working with air conditioning and ventilation system at the same time.

Adsorption Characteristics of Cobalt Ion with Zeolite Synthesized by Coal Fly Ash (석탄계 비산재로 합성한 제올라이트를 이용한 코발트 이온의 흡착특성)

  • Lee, Chang-Han;Suh, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.941-946
    • /
    • 2009
  • Two types of synthetic zeolites, commercially used (Z-WK) and synthesized by coal fly ash (Z-C1), and raw coal fly ash(F-C1) were examined for its kinetics and adsorption capacities of cobalt. Experimental data are fitted with kinetic models, Lagergen $1^{st}$ and $2^{nd}$ order models, and four types of adsorption isotherm models, Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan. Synthesized zeolite (Z-C1) which had 1.51 of Si/Al ratio was synthesized by raw coal fly ash from a thermal power plant. Adsorption capacities with three types of adsorbents, Z-WK, Z-C1, and F-C1, were in the order of Z-C1 (94.15 mg/g) > F-C1 (92.94 mg/g) > Z-WK (88.56mg/g). The adsorption kinetics of Z-WK and Z-C1 with cobalt could be accurately described by a pseudo-second-order rate equation. The adsorption isotherms of Z-WK and Z-C1 with cobalt were well fitted by the Langmuir and Redlich-Peterson equation. Z-C1 will be used to remove cobalt in water as a more efficient absorbent.

Characteristics of carbon dioxide separation using amine functionalized carbon (아민기 개질 탄소를 이용한 이산화탄소 분리 특성)

  • Cha, Wang Seog;Lim, Byeong Jun;Kim, Jun Su;Lee, Sung Youn;Park, Tae Jun;Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 2021
  • The development of a new sorbent for carbon dioxide depends on several factors, such as fast adsorption/absorption velocity, hydrophobicity, and lower regeneration temperature than commercial sorbent. In this study, aminosilane grafted activated carbon was synthesized to capture CO2. Methyltrimethoxysilane (MTMS) and 3-aminopropyl-triethoxysilane (APTES) were used as the grafting precursor of the amine functional group. The APTES grafting activated carbon showed higher sorption property than MTMS used one. The characteristics of the separation mechanism of carbon dioxide were examined by measuring the adsorption capacity according to temperature and carbon dioxide partial pressure. The absorption capacity of carbon dioxide was similar to amine grafting activated carbon and activated carbon at 25℃, but amine-grafted activated carbon was higher at 75℃. The amine functional group-grafted activated carbon showed higher absorption capacity than activated carbon with a 1% carbon dioxide partial pressure. Aminosilane grafting of activated carbon was chemically absorbed but also showed the characteristics of physical adsorption. The reforming activated carbon with an amine functional group grafted solid absorption/adsorption sorbent would significantly impact the material engineering industry and carbon dioxide adsorption process. The functionalized sorbent is a high-performance composite material. The developed sorbent may have applications in other industrial processes of absorption/adsorption and separation.

Study on the Removal of Carbon Dioxide in the Subway Cabin Using Zeolite Type Carbon Dioxide Adsorbent (제올라이트계 이산화탄소 흡착제를 사용한 지하철 객실 내부의 이산화탄소 제거에 관한 연구)

  • Cho, Young-Min;Park, Duck-Shin;Kwon, Soon-Bark;Lee, Ju-Yeol;Hwang, Yun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • High concentration of carbon dioxide at subway cabin is one of the serious environmental concerns because carbon dioxide causes drowsiness, headache, and nervelessness of passengers. Ministry of Environment set a guideline for indoor carbon dioxide levels in train or subway in 2007. In this study, a carbon dioxide removal system for subway cabin was developed and tested using a test subway cabin. Various types of modified zeolites were used as the adsorbent of carbon dioxide. The tested zeolites were applied to the subway cabin, and showed high potential to lower the indoor $CO_2$ level.

Adsorption of Carbon Dioxide using Pelletized AC with Amine impregnation (아민 함침 입자상 활성탄의 특성 분석 및 이산화탄소 흡착능 평가연구)

  • Lim, Yun-Hui;Jo, Young-Min;Kim, Seung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-95
    • /
    • 2013
  • This study attempts to capture the low level carbon dioxide from indoor spaces using a granular activated carbon (WSC-470) which was modified with primary monoethanolamine. Adsorption capacity of the prepared adsorbents was evaluated for pure $CO_2$ flow and 3000 ppm as a function of MEA concentration and solvents such as distilled water, ethanol and methanol. The AC based adsorbents then were characterized in terms of pore structure by BET and chemical functionalities by XPS. While high concentration of MEA reduced specific surface area, porosity and micro pores, nitrogen content which can enhance the surface basicity was increased. The maximum adsorption capacity decreased comparing to the initial AC pellets, whilst the potential of selective adsorption amount at low level $CO_2$ was increased at 45% (0.73 mmol/g).

Preparation of composite adsorbent for low level $CO_2$ (저농도 $CO_2$ 포집을 위한 복합흡착제 제조)

  • Park, Young-Koo;Jo, Young-Min;Kim, Ho-Kyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.257-264
    • /
    • 2008
  • Adsorption is one of the most efficient method for the separation of low level carbon dioxide. In order to enhance the adsorption capacity, a few additives such as alkali hydroxides were combined with the zeolitic sorbents. As a result of the experimental examination by applying the $CO_2$ flow of 3000 ppm, the composite sorbent showed the improved quality to a certain degree and the added binder was also found to contribute to better adsorption.