• Title/Summary/Keyword: $CO_2$ 흡수

Search Result 961, Processing Time 0.027 seconds

Carbon Dioxide Absorption Property of Physical Sorbent in the Pre-Combustion Condition (연소전 조건에서 물리흡수제를 이용한 이산화탄소 흡수특성)

  • Baek, Geun-Ho;You, Seung-Han;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4643-4648
    • /
    • 2010
  • In this study, $CO_2$ absorption properties at high pressure condition that can apply pre-combustion $CO_2$ capture were investigated for physical sorbent such as PEG, DMSO, and Sulfone. The $CO_2$ Solubility, regeneration, and initial absorption rate with temperature and pressure were measured using batch type stirred cell contactor. The PEG showed the highest $CO_2$ solubility and initial absorption rate. It can be found that all the physical sorbents used in this experiments were almost completely regenerated at various temperature and pressure.

Absorption Characteristics of Carbon Dioxide by Water-lean Diethylenetriamine Absorbents Mixed with Physical Solvents (물리 흡수제를 포함한 디에틸렌트리아민(Diethylenetriamine) 저수계 흡수제에서의 이산화탄소 흡수 특성)

  • Lee, Hwa Young;Seok, Chang Hwan;You, Jong-Kyun;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • In this work, N-methyl-2-pyrrolidone (NMP) was added into diethylenetriamine (DETA) aqueous solution for high $CO_2$ loading via phase splitting of absorbents during $CO_2$ absorption. Immiscible two phases were formed in the range of more than 30 wt% of NMP in 2 M DETA + NMP + water absorbents because of low solubility of DETA-carbamate in NMP solution. As the composition of NMP in the absorbents increased, the difference of $CO_2$ loading between each phase increased and the volume of bottom phase decreased. In $CO_2$ absorption in packed column by 2 M DETA + NMP + water absorbents, the absorption rate decreased in the range of more than 40 wt% of NMP. It is due to the increasing of mass transfer resistance in liquid film of absorbents at the high concentration of NMP. DETA + NMP + water absorbent is expected as the promising one for reducing the regeneration energy of absorbents according to volume reduction of $CO_2-rich$ phase.

Estimation of C Storage and Annual $CO_2$ Uptake by Street Trees in Gyeonggi-do (경기도 도시가로수의 탄소저장량과 연간 이산화탄소 흡수량 산정)

  • Park, Eun-Jin;Kang, Kyu-Yi
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.5
    • /
    • pp.591-600
    • /
    • 2010
  • We estimated and compared C storages and annual $CO_2$ uptakes by 9 dominant tree species planted along the streets. DBH and age by tree species were measured in the sites selected considering the planting status and distributions of tree species, and biomass, C storage, growth rate, and annual $CO_2$ uptake were estimated for each species. As a result, L. tulipifera, M. glyptostroboides, P. occidentalis were classified into fast-growing group, P. serrulata, G. biloba, Z. serrata, S. japonica, A. palmatum showed intermediate growth rates, and P. densiflora was slow-growing. Average C storage per tree was 205kgC/tree and ranged from 518kgC/tree(L. tulipifera) to 41kgC/tree(P. densiflora). Average annual $CO_2$ uptake by urban street trees over their lifespan ranged from $7.6kgCO_2$/tree/y to $99.1kgCO_2$/tree/y and L. tulipifera was the greatest, followed by glyptostroboides and P. occidentalis, and P. densiflora was the lowest. Total annual $CO_2$ uptake by all street trees in Gyeonggi-do, estimated based on the annual $CO_2$ uptake by each species, was as small as approximately 0.67% of that by forest in Gyeonggi-do. However, urban trees are still important because forest area continues to decrease and urbanization occurs annually in Gyeonggi-do, and should be managed considering their multi-functional aspects, including mitigation of heat island effect and building energy saving(indirect $CO_2$ uptake).

The Effect of Designing Washing Column in Post Combustion CO2 Capture Plant on the Losses of Amine Solvent (습식아민 CO2 포집설비의 물 세정 단 설계에 따른 흡수제 손실 영향 평가)

  • Han, Sun-Gu;Ko, Hyun-Shin;Kim, Sung-Kyu;Choi, Si-Mook
    • Plant Journal
    • /
    • v.13 no.2
    • /
    • pp.34-38
    • /
    • 2017
  • To reduce global warming, there are so many studies, investments and efforts. The Post Combustion $CO_2$ Capture technology is one of these efforts. But the technologies are having trouble with reducing operating prices. And CCS technology which is using amine solvent uses high price amine solvent. There is solvent losses naturally when operating plant. The solvent loss makes operating and maintenance price higher. In this study, how the washing column of treated flue gas affects the losses of amine solvent and operating was studied.

  • PDF

Carbon Dioxide Absorption in a Packed Column Using Guanidine-based Superbase Solution (구아니딘계 초염기 흡수제에 의한 충진탑에서의 이산화탄소 포집 특성)

  • Choi, Young Min;Hong, Yeon Ki;You, Jong Kyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.648-652
    • /
    • 2016
  • The study of $CO_2$ absorption in a packed column by 1,1,3,3-tetramethylguanidine (TMG) dissolved in ethylene glycol is presented. Absorption column of inner diameter 1 in and 0.6 m length was filled with Protruded-packing $0.16in{\times}0.16in$. We investigated the effect of operating conditions on overall mass transfer coefficients as well as on $CO_2$ removal efficiency. The loading values reached at about $1.0mol_{CO2}/mol_{TMG}$. In case of absorbent with lean $CO_2$ loading, the overall mass transfer coefficient was proportional to the concentration of TMG. However, in the range of more than ${\alpha}=0.5molCO_2/molTMG$, the overall mass transfer coefficients decreased with the concentration of TMG. It is due to the increasing of mass transfer resistance in liquid phase as increasing of viscosity at higher loading values.

A Study on the Availability of Spatial and Statistical Data for Assessing CO2 Absorption Rate in Forests - A Case Study on Ansan-si - (산림의 CO2 흡수량 평가를 위한 통계 및 공간자료의 활용성 검토 - 안산시를 대상으로 -)

  • Kim, Sunghoon;Kim, Ilkwon;Jun, Baysok;Kwon, Hyuksoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.124-138
    • /
    • 2018
  • This research was conducted to examine the availability of spatial data for assessing absorption rates of $CO_2$ in the forest of Ansan-si and evaluate the validity of methods that analyze $CO_2$ absorption. To statistically assess the $CO_2$ absorption rates per year, the 1:5,000 Digital Forest-Map (Lim5000) and Standard Carbon Removal of Major Forest Species (SCRMF) methods were employed. Furthermore, Land Cover Map (LCM) was also used to verify $CO_2$ absorption rate availability per year. Great variations in $CO_2$ absorption rates occurred before and after the year 2010. This was due to improvement in precision and accuracy of the Forest Basic Statistics (FBS) in 2010, which resulted in rapid increase in growing stock. Thus, calibration of data prior to 2010 is necessary, based on recent FBS standards. Previous studies that employed Lim5000 and FBS (2015, 2010) did not take into account the $CO_2$ absorption rates of different tree species, and the combination of SCRMF and Lim5000 resulted in $CO_2$ absorption of 42,369 ton. In contrast to the combination of SCRMF and Lim5000, LCM and SCRMF resulted in $CO_2$ absorption of 40,696 ton. Homoscedasticity tests for Lim5000 and LCM resulted in p-value <0.01, with a difference in $CO_2$ absorption of 1,673 ton. Given that $CO_2$ absorption in forests is an important factor that reduces greenhouse gas emissions, the findings of this study should provide fundamental information for supporting a wide range of decision-making processes for land use and management.

Post-combustion CO2 capture with potassium L-lysine (Potassium L-lysine을 이용한 연소 후 이산화탄소 포집)

  • Lim, Jin Ah;Yoon, Yeo Il;Nam, Sung Chan;Jeong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4627-4634
    • /
    • 2013
  • Carbon dioxide is one of the main causes of global warming. In order to develop a novel absorbent, the characteristics of amino acid salts solution as a solvent for $CO_2$ capture in continuous process were investigated. The cost of $CO_2$ capture is almost 70% of total cost of CCS (carbon dioxide capture and storage). In the carbon dioxide capture process, process maintenance costs consist of the absorbent including the absorption, regeneration, degradation, and etc. It is very important to study the characteristics of absorbent in continuous process. In this study, we have investigated the properties of potassium L-lysine (PL) for getting scale-up factors in continuous process. To obtain optimum condition for removal efficiency of $CO_2$ in continuous process by varying liquid-gas (L/G) ratio, concentration of $CO_2$ and absorbent (PL) were tested. The stable condition of absorber and regenerator (L/G) ratio is 3.5. In addition, PL system reveals the highest removal efficiency of $CO_2$ with 3.5 of L/G and 10.5 vol% $CO_2$ ($1.5Nm^3/h$).

Characteristics of $CO_{2}$ Absorption and Degradation of Aqueous Alkanolamine Solutions in $CO_{2}$ and $CO_{2}-O_{2}$ System ($CO_{2}$$CO_{2}-O_{2}$ 시스템에서 알카놀아민류 흡수제를 이용한 $CO_{2}$ 흡수 및 흡수제 열화 특성)

  • Choi, Won-Joon;Lee, Jong-Seop;Han, Keun-Hee;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.256-262
    • /
    • 2011
  • Amine can undergo irreversible reactions by $O_{2}$ and high temperature in amine scrubbing process and these phenomena are called "degradation". Degradation causes not only a loss of valuable amine, but also operational problems such as foaming, corrosion and fouling. In this study, using various chemical absorbents(MEA; monoethanolamine, AMP; 2-amino-2-methyl-1-propanol, DAM; 1,8-diamino-p-menthane), we examined the following variable. I) loading ratio of $CO_{2}$ at $50^{\circ}C$ and $120^{\circ}C$, ii) concentration variation and initial degradation rate constant of absorbent in $CO_{2}$ and $CO_{2}/O_{2}$ system, and iii) effect of degradation by $O_{2}$. The $CO_{2}$ loading of 20 wt% DAM was 400% and 270% higher than that of 20 wt% MEA and AMP at 50, respectively and was the largest the difference of $CO_{2}$ loading between absorption $(50^{\circ}C)$ and regeneration $(120^{\circ}C)$ condition. The initial degradation rate constant of 20 wt% DAM was $2.254{\times}10^{-4}cycle^{-1}$ which was slower than that of MEA $(2.761{\times}10^{-4}cycle^{-1})$ and AMP $(2.461{\times}10^{-4}cycle^{-1})$ in $CO_{2}$ system. Also, it was increased 30% by $O_{2}$ that effects on the degradation by $O_{2}$ was less than 100% increased. these degradation reactions was able to identify by formation of new peak in GC and FT-IR spectrum analysis.

Absorption characteristic of carbon dioxide in Ionic Liquids based sulfite anion in the pre-combustion condition (연소 전 조건에서 음이온이 Sulfite계인 이온성 액체의 CO2 흡수 특성)

  • Baek, Geun Ho;Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.763-769
    • /
    • 2021
  • In this study, ionic liquids were synthesized to remove carbon dioxide (CO2) on a laboratory scale. The vapor-liquid absorption equilibrium device (VLE) was used to investigate the carbon dioxide absorption capacity. In the regeneration study, the absorption capacity after regeneration was reduced by approximately 7% for all ionic liquids, in which the anion was sulfite-based, showing excellent regeneration. Ethyl sulfite showed the highest absorption capacity of CO2 among the ionic liquids based on the sulfite anion. In particular, the absorption capacity of [beim] ethyl sulfite was 1.1 mol CO2 / mol IL at an absorption equilibrium pressure of 22 bar. In the regeneration study, the absorption capacity after regeneration was reduced by approximately 7% for all ionic liquids, in which the anion was sulfite-based, from which regeneration is outstanding. After the absorption experiment, the viscosity of the sample tended to decrease by approximately 8% compared to that before the absorption experiment. On the other hand, the absorbent was synthesized in the first step. Moreover, the raw material used is also inexpensive and has excellent reproducibility and highly stable absorbent capacity.

An IRS Study on the Adsorption of Carbonmonoxide on Silica Supported Ni-Cu Alloys (실리카 지지 니켈-구리 합금에서 일산화탄소의 흡착에 관한 IRS 연구)

  • Ahn, Jeong-Soo;Yoon, Koo-Sik;Park, Sang-Youn;Park, Sung-Kyun
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.233-243
    • /
    • 2009
  • We have investigated the infrared spectra for CO adsorbed on silica supported nickel(Ni-Si$O_2$), silica supported copper(Cu-Si$O_2$), silica supported nickel-copper alloys(Ni/Cu-Si$O_2$) of several compositions with varying CO pressures(0.2 $torr{\sim}$50 torr) at room temperature and on pumping to vacumn at room temperature within the frequency range of 1500 $cm^{-1}{\sim}2500\;cm^{-1}$. Four bands(2059.6 $cm^{-1},\;{\sim}$2036.5 $cm^{-1},\;{\sim}$ 1868.7 $cm^{-1},\;{\sim}$ 1697.1 $cm^{-1}$) were observed for Ni-Si$O_2$, two bands($\sim$2115.5 $cm^{-1},\;{\sim}$1743.0 $cm^{-1}$) were observed for Cu-Si$O_2$ and five bands(${\sim}2123.2\;cm^{-1}$, 2059.6 $cm^{-1},\;{\sim}$2036.4 $cm^{-1},\;{\sim}$1899.5 $cm^{-1},\;{\sim}$1697.1 $cm^{-1}$) were observed for Ni/Cu-Si$O_2$. These absorption bands correspond with those of the previous reports approximately. The bands below 1800 $cm^{-1}$ were only observed with Ni metal or Ni/Cu alloy crystal plane containing step at room temperature and the ${\sim}1697.1\;cm^{-1}$ bands observed with Ni-Si$O_2$ and Ni/Cu-Si$O_2$ may be ascribed to CO molecule adsorbed on the adsorption sites near step. The bands below 2000 $cm^{-1}$ were rarely observed with Cu metal crystal plane at room temperature and the 1743.0 $cm^{-1}$ bands may be ascribed to CO molecule adsorbed on the adsorption sites near step. The band shifts of adsorbed CO with varing Cu contents from 0 to 0.5 mole fraction at the same CO pressure or at the same pumping time to vacumn were below 21 $cm^{-1}$. and comparatively small than those with other ⅠB metal addition. It may means ligand effect of Cu d electron is small.