• Title/Summary/Keyword: $CO_2$ 모니터링

Search Result 363, Processing Time 0.025 seconds

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology (지그비 기술을 이용한 지하광산 내 실시간 환경 모니터링 시스템 현장 적용 연구)

  • Park, Yo Han;Lee, Hak Kyung;Seo, Man Keun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.108-123
    • /
    • 2019
  • In recent years, as safety management in underground mines has become more important in the worldwide, mine safety management technologies combining information communication technology such as real-time worker position tracking, monitoring system and equipment remote control have been developed. Wireless communication system is mainly applied to these technologies for the flexibility of network configuration. There are some cases the monitoring system was installed in domestic underground mines, but, it is necessary to develop the technology more suitable for domestic mining standard. In this study, we developed the real-time environmental monitoring system using ZigBee technology and examined the result of application to domestic limestone mine. Furthermore, applicability of the developed environment monitoring system to $VentSim^{TM}$ LiveView was checked. This study is expected to contribute to the related studies like the optimization of the ventilation system in underground mines.

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

Exploration of the Relationship between Traffic Volume and Air Quality Using Existing Monitoring Data (기존 교통량/대기질 모니터링 시스템 구축 자료를 활용한 상관성 분석)

  • Go, Jun-Ho;Choe, Yu-Jin;Lee, Se-Hui;Lee, Tae-Gyeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.29-37
    • /
    • 2009
  • As the level of the ambient air quality becomes increasingly important, transportation management strategies tend to incorporate air quality standards into their measure of effectiveness. However, previous research efforts did not pay much attention to the empirical relationships between traffic volume and air quality, potentially due to the lack of data. With this background, this study investigates the relationship using Seoul's existing traffic and air quality monitoring data collected over the period of three years, from 2005 through 2007. In particular, those paired monitoring sites with a distance of less than one kilometer apart were utilized, targeting the emissions of CO, NO, $NO_2$, and $PM_{10}$. As a result, in general the data of two monitoring systems exhibited lower correlations, $NO_2$ showing a relatively higher correlation with traffic volumes than other emissions. In addition, it was found that the degree of correlation can be higher for the data obtained over the morning time period, 6am-9am, and the day after rainy days.

Moving magnet operator monitoring system with high-precision position control (고정밀 위치제어가 가능한 자석가동자 모니터링 시스템)

  • Kim, Hong-youn;Kim, Seu-hong;Piao, Hai-lian
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.756-759
    • /
    • 2021
  • 본 논문은 기존의 5축 치아가공기나 반도체장비등에 사용하고 있는 회전형 모터의 경우는 엔코더와 리졸버를 사용하고 있다. 엔코더와 레졸버는 고가이므로 실제 산업현장에서 전동기의 위치 센서로는 적용하기가 힘들다. 또한 엔코더와 레졸버와 같은 광학식 위치센서는 그 크기와 내구성에 있어 약점이 있기 때문에 취부 할 때에도 어려움이 있다. 따라서 본 연구에서는 5축치아가공기에 적용하기 위해서 자석가동자를 만들었으며, 이러한 문제점을 해결하는 방안으로 리니어모터를 고정자로 하고 자석플레이트를 이동자로 하는 시스템과 별도의 리니어 스케일을 배제하고 기존의 정현파를 발생하는 2개의 리니어홀센서 및 영구자석을 이용하여 가동자의 절대위치와 이동 위치를 검출할 수 있는 리니어 모터 및 그 제어방법, 안정성 및 신뢰성을 향상시킬 수 있는 자석가동자를 이용하여 구동시 실시간으로 데이터를 확인할 수 있고 제어할 수 있는 모니터링 시스템을 개발하는 연구이다.

Baseline Survey Seismic Attribute Analysis for CO2 Monitoring on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 CCS 프로젝트의 이산화탄소 모니터링을 위한 Baseline 탄성파 속성분석)

  • Cheong, Snons;Kim, Byoung-Yeop;Bae, Jaeyu
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.485-494
    • /
    • 2013
  • $CO_2$ Monitoring, Mitigation and Verification (MMV) is the essential part in the Carbon Capture and Storage (CCS) project in order to assure the storage permanence economically and environmentally. In large-scale CCS projects in the world, the seismic time-lapse survey is a key technology for monitoring the behavior of injected $CO_2$. In this study, we developed a basic process procedure for 3-D seismic baseline data from the Aquistore project, Estevan, Canada. Major target formations of Aquistore CCS project are the Winnipeg and the Deadwood sandstone formations located between 1,800 and 1,900 ms in traveltime. The analysis of trace energy and similarity attributes of seismic data followed by spectral decomposition are carried out for the characterization of $CO_2$ injection zone. High trace energies are concentrated in the northern part of the survey area at 1,800 ms and in the southern part at 1,850 ms in traveltime. The sandstone dominant regions are well recognized with high reflectivity by the trace energy analysis. Similarity attributes show two structural discontinuities trending the NW-SE direction at the target depth. Spectral decomposition of 5, 20 and 40 Hz frequency contents discriminated the successive E-W depositional events at the center of the research area. Additional noise rejection and stratigraphic interpretation on the baseline data followed by applying appropriate imaging technique will be helpful to investigate the differences between baseline data and multi-vintage monitor data.

An Introduction to Time-lapse Seismic Reservoir Monitoring (시간경과 탄성파 저류층 모니터링 개론)

  • Nam, Myung-Jin;Kim, Won-Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.203-213
    • /
    • 2011
  • Time-lapse seismic surveys make repeated seismic surveys at different stages of oil production of a hydrocarbon reservoir to monitor changes in reservoir like fluid saturation. Since the repeatable surface seismic measurements can identify fluid types and map fluid saturations, oil and gas companies can make much more informed decision during not only production but also drilling and development. If time-lapse seismic surveys compare 3D seismic surveys, the time-lapse surveys are widely called as 4D seismic. A meaningful time-lapse interpretation is based on the repeatability of seismic surveys, which mainly depends on improved positioning and reduced noise (if surveys were designed properly through a feasibility study). The time-lapse interpretation can help oil and gas companies to maximize oil and gas recovery. This paper discusses about time-lapse seismic surveys mainly focused on feasibility, repeatability, data processing and interpretation.

Time-lapse Geophysical Monitoring of $CO_2$ Sequestration (시간 경과에 따른 반복적 물리탐사 기법을 이용한 이산화탄소의 지중처리 모니터링)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Nam, Myung-Jin;Song, Yoon-Ho;Lee, Tae-Jong;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.280-286
    • /
    • 2005
  • Geological sequestration of carbon dioxide ($CO_2$) is one of the most effective strategies far long-term removal of greenhouse gas from atmosphere. This paper reviews three projects for the $CO_2$ sequestration in geological formation. A unique $CO_2$ injection into a marine aquifer has been successfully monitored with repeated surface seismic measurements in the North Sea Sleipner West field. The seismic images reveal the extent and internal shape of the $CO_2$ bubble. Massive miscible $CO_2$ has been injected into a complex fractured carbonate reservoir at the Weyburn oil filed. High-resolution time-lapse P-wave data were successfully obtained to map the features of $CO_2$ movements within the two thin zones of different lithology. From the time-lapse crosswell EM imaging at the Lost Hills oil field in central California, U.S.A., the replacement of brine with $CO_2$ has been confirmed through a decrease of conductivity. The conductivity image was successfully compared with induction logs observed in the two wells.

A Ubiquitous Sensor Network for Air Environment Monitoring of Subway (지하철역 대기환경 감시를 위한 유비쿼터스 센서 네트워크)

  • Kwon, Jong-Won;Kim, Hie-Sik;Kang, Sang-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.182-183
    • /
    • 2008
  • 환기시설이 열악한 도시 지하철역 내의 대기환경은 지상보다 열악할 수밖에 없다. 현재 지하철역을 주로 사용하는 시민들의 안전을 보호 하고 지하철의 대기환경을 개선하기 위해 스크린 도어, 자동 제어 환기시설, 종합 영상 감지시스템 등 다양한 노력을 기울이고 있다. 하지만 일부 지하철역에 설치되어 있는 공기질 모니터링 시스템은 수입품에 의존하고 고가의 장비이므로 초기설치 비용뿐만 아니라 유지보수의 어려움을 겪고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 무선 센서 네트워크 기술을 적용하여 저가형 대기환경 모니터링 시스템을 개발했다. 이 시스템의 구성은 센서노드(ZED : ZigBee End Deice), 네트워크 코디네이터(ZCM : ZigBee Coordinator Modem), 수신서버로 구성된다. 지하철역 내부의 미세먼지, CO2, CO, 온습도, VOCs 데이터를 센싱할 수 있는 확장 센서보드를 설계한 후, 지하공간에서의 열악한 통신환경에서 QoS를 보장할 수 있도록 ZigBee 라우팅 기술을 이용한 센서노드(ZED)를 인터페이스하여 하나의 통합된 대기환경 센서 노드(ZED)를 개발했다. 또한 수신서버에 USB방식으로 연결되어 각각의 ZED로부터 데이터를 수신하는 센서노드(ZCM)과 전송된 데이터를 저장 및 처리하여 언제 어디서나 누구든지 인터넷을 통해 확인 가능하도록 지하철 대기환경 모니터링을 위한 수신서버를 개발했다.

  • PDF

Development of Marine Debris Monitoring Methods Using Satellite and Drone Images (위성 및 드론 영상을 이용한 해안쓰레기 모니터링 기법 개발)

  • Kim, Heung-Min;Bak, Suho;Han, Jeong-ik;Ye, Geon Hui;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1109-1124
    • /
    • 2022
  • This study proposes a marine debris monitoring methods using satellite and drone multispectral images. A multi-layer perceptron (MLP) model was applied to detect marine debris using Sentinel-2 satellite image. And for the detection of marine debris using drone multispectral images, performance evaluation and comparison of U-Net, DeepLabv3+ (ResNet50) and DeepLabv3+ (Inceptionv3) among deep learning models were performed (mIoU 0.68). As a result of marine debris detection using satellite image, the F1-Score was 0.97. Marine debris detection using drone multispectral images was performed on vegetative debris and plastics. As a result of detection, when DeepLabv3+ (Inceptionv3) was used, the most model accuracy, mean intersection over union (mIoU), was 0.68. Vegetative debris showed an F1-Score of 0.93 and IoU of 0.86, while plastics showed low performance with an F1-Score of 0.5 and IoU of 0.33. However, the F1-Score of the spectral index applied to generate plastic mask images was 0.81, which was higher than the plastics detection performance of DeepLabv3+ (Inceptionv3), and it was confirmed that plastics monitoring using the spectral index was possible. The marine debris monitoring technique proposed in this study can be used to establish a plan for marine debris collection and treatment as well as to provide quantitative data on marine debris generation.