• Title/Summary/Keyword: $CO_2$ 격리

Search Result 89, Processing Time 0.032 seconds

Biomineralization Processes Using Fly Ash for Carbon Sequestration (석탄회를 이용하는 탄소 격리용 생광물화 작용)

  • Yul Roh;Moon, Ji-Won;Yungoo Song;Moon, Hi-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.171-180
    • /
    • 2003
  • The objective of this study is to investigate biogeochemical processes to sequester $CO_2$and metals utilizing metal-rich fly ash (MRFA). Microbial conversion of $CO_2$into sparingly soluble carbonate minerals has been studied using MRFA under different $pCO_2$and different bicarbonate concentrations. Scaling from test tube to fermentation vessels (up to 4-L) using metal-reducing bacteria and MRFA has proved successful at sequestering carbon dioxide and metals. $CO_2$sequestration via precipitation processes using MRFA may complement the process of $CO_2$capture from fossil fuel plants while potentially stabilizing fly ash wastes.

Effects of Elevated $CO_2$ Concentrations on Marine Lives in Seawater (고농도 $CO_2$ 환경이 해양생물에 미치는 영향)

  • Lee Kyoung-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.157-163
    • /
    • 2006
  • The scenario of $CO_2$ disposal in the deep-sea are thought to be possible method to reduce atmospheric $CO_2$ concentrations. However, it is necessary to clarify the effects of elevated $CO_2$ concentrations on both marine organisms and marine ecosystems. In this paper the literatures on the biological impact of elevated $CO_2$ concentrations in seawater and recent studies on the effects of elevated $CO_2$ concentrations on marine animals are reviewed. Elevated $CO_2$ concentrations may affect the physiological functions of marine animals such as acid-base regulation, blood oxygen transport and respiratory system, and ultimately lead to the death of marine animals. Although the fish used in the early studies on $CO_2$ effects are temperate, shallow-water species, deep-sea species should be experimented for the future study on $CO_2$ sequestration in the deep ocean.

  • PDF

Development of the Efficiency-Evaluation Model for the Mechanism of CO2 Sequestration in a Deep Saline Aquifer (심부 대염수층 CO2 격리 메커니즘에 관한 효율성 평가 모델 개발)

  • Kim, Jung-Gyun;Lee, Young-Soo;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.55-66
    • /
    • 2012
  • The practical way to minimize the greenhouse gas is to reduce the emission of carbon dioxide. For this reason, CCS(Carbon Capture and Storage) technology, which could reduce carbon dioxide emission, has risen as a realistic alternative in recent years. In addition, the researcher is recently working into ways of applying CCS technologies with deep saline aquifer. In this study, the evaluation model on the feasibility of $CO_2$ sequestration in the deep saline aquifer using ANN(Artificial Neural Network) was developed. In order to develop the efficiency-evaluation model, basic model was created in the deep saline aquifer and sensitivity analysis was performed for the aquifer characteristics by utilizing the commercial simulator of GEM. Based on the sensitivity analysis, the factors and ranges affecting $CO_2$ sequestration in the deep saline aquifer were chosen. The result from ANN training scenario were confirmed $CO_2$ sequestration by solubility trapping and residual trapping mechanism. The result from ANN model evaluation indicated there is the increase of correlation coefficient up to 0.99. It has been confirmed that the developed model can be utilized in feasibility of $CO_2$ sequestration at deep saline aquifer.

CFD APLICATIONS FOR THE $CO_2$ OCEAN SEQUESTRATION ($CO_2$ 해양격리를 위한 CFD의 응용연구)

  • Jung, R.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.196-201
    • /
    • 2009
  • Global warming issues due to the $CO_2$(Carbon Dioxide) become increasing since the Industrial Revolution. After the Kyoto protocol at 1997, nations which have the prearranged quota drives their national project for the reduction of $CO_2$. Korean Government start to the related big projects in the view of three concepts which have consist of the $CO_2$ exhaust reduction on land, $CO_2$ capture and $CO_2$ storage. Furthermore, the storage method putting into depleted region underground is accepted by the London Convention while the ocean diluted method discharging the liquid $CO_2$ into the deep ocean using the long pipe which is towed by the surface vessel is underway for the research steps which means that there are many potentials for the R&Ds that need for the breakthrough. In this paper, the role and example of the Computational Fluid Dynamics for the feasibility study of the $CO_2$ ocean sequestration is mentioned.

  • PDF

[ $CO_2$ ] Sequestration in Geological Structures in the Maritime Area: A Preliminary Review (이산화탄소 해저 지질 구조 격리: 기술 현황과 제도 예비검토)

  • Hong, Gi-Hoon;Park, Chan-Ho;Kim, Han-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.203-212
    • /
    • 2005
  • Anthropogenic emissions of greenhouse gases, particularly carbon dioxide($CO_2$) which arises mainly as wastes from the fossil fuel burning processes, are causing global warming. The effects of global warming become increasingly felt all over the world including sea level rise and extreme weather. The more direct consequences of the elevated atmospheric $CO_2$ on the ocean is the acidification of the surface ocean which brings a far reaching adverse impact on the life at sea and probably on the whole ecosystem of the planet. Improvement in energy efficiency and use of alternative energy sources are being made to reduce $CO_2$ emissions. However, a rapid transition to alternatives seems unachievable within a few decades due to the constraints on the associated technology and socio-economic factors in the world, since fossil fuels make up approximately 85% of the world's commercial energy demands. It has now been recognized that capture and geological sequestration of $CO_2$ could significantly reduce its emissions from fossil fuel utilization and therefore provides the means to rapidly achieve large reductions in $CO_2$ emissions(excerpts from London Convention, LC/SG 28, 2005). In Korea, well-developed sedimentary basins are spread over the vast continental shelf and slope regions, whereas, the land is densely populated and limited in area. Consequently, the offshore area is preferred to the land for the sites for geological sequestration. The utilization of the offshore area, however, may be subject to international agreements including London Convention. In this paper, the recent trends in technologies and regulations for $CO_2$ capture and geological sequestration are described to encourage its applications in Korea.

  • PDF

Experimental Design of Octopus for $CO_2$ Effects on Marine Organisms (해양생물에 대한 $CO_2$의 영향을 실험하기 위한 문어의 이용)

  • Lee Kyoung-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.3 s.26
    • /
    • pp.179-183
    • /
    • 2006
  • $CO_2$ impacts on marine ecosystems must be elucidated before implementation of $CO_2$ ocean sequestration. This study was performed for the purpose of applying the use of a cephalopod, Octopus vulgaris to the evaluation of $CO_2$ impacts on marine organisms. 1) 5.25% $MgCl_2\;6H_2O$ is an effective anaesthetic for octopus. 2) Cannula implantation into the abdominal aorta is effective for octopus. 3) A restraint chamber made out of the plastic net is suitable to permit the exit of cannula from the body.

  • PDF

핫이슈 - 컬러푸드가 식탁을 점령하고 있다

  • Jo, Hui-Yeon
    • Food Industry
    • /
    • s.246
    • /
    • pp.2-3
    • /
    • 2015
  • 메르스(MERS)는 새로운 변종 코로나바이러스(MERS-CoV) 감염으로 인한 중증급성호흡기질환의 이름이다. 2015년 5월 20일 한국에서 메르스 최초 감염자가 확인되었다. 2015년 6월 17일 기준으로 메르스로 인한 격리대상자는 6,508명이며, 잠복기가 지나 격리가 해제된 사람은 총 3,951명이다. 메르스 광풍에서 살아남을 수 있는 방법은 없을까.

  • PDF

Review on Ocean Carbon Sequestration through Direct Injection (심층 분사를 통한 해양 이산화탄소 격리 기술 소개)

  • Park, Young-Gyu;Choi, Sang-Hwa;Matsumoto, Katsumi;Lee, Jung-Suk;Gang, Seong-Gil;Hwang, Jin-Hwa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2007
  • The oceans could absorb almost all the anthropogenic carbon dioxide the mankind has been producing eventually, but in the nature the air-sea $CO_2$ exchange occurs very slowly and to lower the atmospheric $CO_2$ concentration substantially $CO_2$ must be injected to the interior of the ocean directly. If we inject $CO_2$ collected at the major $CO_2$ sources into the international waters in the Philippine Sea or east of Japan, we could store the $CO_2$ in the oceans effectively for a few hundred years. When $CO_2$ is dissolved into the water, PH drops. The creatures adapted to the deep oceans where environment is very stable could be affected by even a small change in pH significantly. If, therefore, we are to inject $CO_2$ into the oceans, we must assess the effect of $CO_2$ injection in the marine ecosystem beforehand. Only when the damage to the marine ecosystem is smaller than the benefit from the $CO_2$ injection, $CO_2$ injection is effective.

  • PDF

Economic Feasibility Study for CO2 Ocean Sequestration (CO2 해양격리시스템의 기술.경제적 가능성평가)

  • Park, Se-Hun;Oh, Wee-Yeong;Kwon, Moon-Sang
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.451-461
    • /
    • 2005
  • The $CO_2$ storage in geologic and oceanic reservoirs is considered to be one of the carbon management strategies for responding to global climate change. Ocean carbon sequestration is purposeful storage acceleration into the ocean of large amounts of carbon that would accumulate in the atmosphere and naturally enter the ocean over a longer timespan. Some technologies for $CO_2$ ocean sequestrations have been developed as a nation project. However, $CO_2$ ocean sequestrations are attractive because they have the advantage of vast capacity sequestration far away from industrial areas, and offer easier monitoring whereas less economic advantage has been indicated as one of the key barriers compared with $CO_2$ geosphere sequestration, which is produced as a byproduct. In this paper, a conceptual design for $CO_2$ ocean sequestration is introduced, and the preliminary examination is described. As a result, the $CO_2$ price, US$ 24/t shows far away from the economics. The causes come from the expensive $CO_2$ recovery cost and the low $CO_2$ price. The expensive $CO_2$ recovery cost is because too much electricity and water are consumed. In order to look for an economic balance point for $CO_2$ ocean sequestration, NPV=0, it is increases the $CO_2$ price. Finally 60.4$ per ton is found to be the balance price.