• Title/Summary/Keyword: $CO_2$ 가스화

Search Result 827, Processing Time 0.035 seconds

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Characteristic of Precipitated Metal Carbonate for Carbon Dioxide Conversion Using Various Concentrations of Simulated Seawater Solution (해수 농축수 내 금속 이온 농도에 따른 이산화탄소 전환 생성물의 특성연구)

  • Choi, Eunji;Kang, Dongwoo;Yoo, Yunsung;Park, Jinwon;Huh, Il-sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.539-546
    • /
    • 2019
  • Global warming has mentioned as one of the international problems and these researches have conducted. Carbon Capture, Utilization and Storage (CCUS) technology has improved due to increasing importance of reducing emission of carbon dioxide. Among of various CCUS technologies, mineral carbonation can converted $CO_2$ into high-cost materials with low energy. Existing researches has been used ions extracted solid wastes for mineral carbonation but the procedure is complicated. However, the procedure using seawater is simple because it contained high concentration of metal cation. This research is a basic study using seawater-based wastewater for mineral carbonation. 3 M Monoethanolamine (MEA) was used as $CO_2$ absorbent. Making various concentrations of seawater solution, simulated seawater powder was used. Precipitated metal carbonate salts were produced by mixing seawater solutions and $rich-CO_2$ absorbent solution. They were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Thermogravimetric Analysis (TGA) and studied characteristic of producing precipitated metal carbonate and possibility of reusing absorbent.

Improvement of charging efficiency of AGM lead acid battery through formation pattern research (Formation pattern 연구를 통한 AGM 연축전지의 충전 효율 향상)

  • Kim, Sung Joon;Son, Jeong Hun;Kim, Bong-Gu;Jung, Yeon Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • In order to improve fuel economy and reduce CO2, HEV adopts ISG system as a standard. This ISG system increased the electric load that the battery had to bear, and the number of starting increased rapidly. AGM Lead Acid batteries have been developed and used, but the charging time is about three times longer as the electrolyte amount control during formation must be maintained at a higher level compared to conventional lead-acid batteries. In this study, we tried to shorten the charging time by increasing the charging efficiency through the optimization of the formation pattern. In order to optimize the Formation Pattern, 10 charging steps and 6 discharging steps were applied to 16 multi steps, and the charging current for each step was controlled, and the test was conducted under 4 conditions (21 hr, 24 hr, 27 hr, 30 hr). As a result of simultaneous application of multi-step and discharge step, it was verified that minimizing the current loss and eliminating the sudden polarization during charging contributes to the improvement of charging efficiency. As a result, it showed excellent results in reducing the charging time by about 30 % with improved charging efficiency compared to the previous one.

Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics (전국 논에서 발생하는 메탄 배출량의 산정 및 지도화: 지역 격차 및 특성 분석)

  • Choi, Sung-Won;Kim, Joon;Kang, Minseok;Lee, Seung Hoon;Kang, Namgoo;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.88-100
    • /
    • 2018
  • Methane emissions from rice paddies are the largest source of greenhouse gases in the agricultural sector, but there are significant regional differences depending on the surrounding conditions and cultivation practices. To visualize these differences and to analyze their causes and characteristics, the methane emissions from each administrative district in South Korea were calculated according to the IPCC guidelines using the data from the 2010 Agriculture, Forestry and Fisheries Census, and then the results were mapped by using the ArcGIS. The nationwide average of methane emissions per unit area was $380{\pm}74kg\;CH_4\;ha^{-1}\;yr^{-1}$. The western region showed a trend toward higher values than the eastern region. One of the major causes resulting in such regional differences was the $SF_o$ (scaling factor associated with the application of organic matter), where the number of cultivation days played an important role to either offset or deepen the differences. Comparison of our results against the actual methane emissions data observed by eddy covariance flux measurement in the three KoFlux rice paddy sites in Gimje, Haenam and Cheorwon showed some differences but encouraging results with a difference of 10 % or less depending on the sites and years. Using the updated GWP (global warming potential) value of 28, the national total methane emission in 2010 was estimated to be $8,742,000tons\;CO_2eq$ - 13% lower than that of the National Greenhouse Gas Inventory Report (i.e., $10,048,000tons\;CO_2eq$). The administrative districts-based map of methane emissions developed in this study can help identify the regional differences, and the analysis of their key controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

The Effect of Annealing Methods on Dopant Activation and Damage Recovery of Phosphorous ion Shower Doped Poly-Si (다결정 실리콘 박막 위에 P이온 샤워 도핑 후 열처리 방법에 따르는 도펀트 활성화 및 결함 회복에 관한 효과)

  • Kim, Dong-Min;Ro, Jae-Sang;Lee, Ki-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • Ion shower doping with a main ion source of $P_2H_x$ using a source gas mixture of $PH_3/H_2$ was conducted on excimer-laser-annealed (ELA) poly-Si.The crystallinity of the as-implanted samples was measured using a UV-transmittance. The measured value using UV-transmittance was found to correlate well with the one measured using Raman Spectroscopy. The sheet resistance decreases as the acceleration voltage increases from 1kV to 15kV at the moderate doping conditions. It, however, increases as the acceleration voltage increases under the severe doping conditions. The reduction in carrier concentration due to electron trapping at uncured damage after activation annealing seems to be responsible for the rise in sheet resistance. Three different annealing methods were investigated in terms of dopant-activation and damage-recovery, such as furnace annealing, excimer laser annealing, and rapid thermal annealing, respectively.

Review on Free-Standing Polymer and Mixed-Matrix Membranes for H2/CO2 Separation (수소/이산화탄소 분리를 위한 프리스탠딩 고분자 및 혼합매질 분리막에 대한 총설)

  • Kang, Miso;Lee, So Youn;Kang, Du Ru;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.218-226
    • /
    • 2022
  • Hydrogen, a carrier of large-capacity chemical and clean energy, is an important industrial gas widely used in the petrochemical industry and fuel cells. In particular, hydrogen is mainly produced from fossil fuels through steam reforming and gasification, and carbon dioxide is generated as a by-product. Therefore, in order to obtain high-purity hydrogen, carbon dioxide should be removed. This review focused on free-standing polymeric membranes and mixed-matrix membranes (MMMs) that separate hydrogen from carbon dioxide reported in units of Barrer [1 Barrer = 10-10 cm3 (STP) × cm / (cm2 × s × cmHg)]. By analyzing various recently reported papers, the structure, morphology, interaction, and preparation method of the membranes are discussed, and the structure-property relationship is understood to help find better membrane materials in the future. Robeson's upper bound limits for hydrogen/carbon dioxide separation were presented through reviewing the performance and characteristics of various separation membranes, and various MMMs that improve separation properties using technologies such as crosslinking, blending and heat treatment were discussed.

Quality Changes of Lentinula edodes GNA01 Mushroom by Choline Dioxide Gas Treatment during Storage (서방형 이산화염소 가스를 이용한 이슬송이버섯의 저장 중 품질 변화)

  • Yoon, Young-Tae;Bong, So-Jung;Kang, Han-Sol;Yoon, Ye-Ji;Kim, Hong-Gil;Min, Kyung-Hun;Lee, Kyung-Haeng
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.499-505
    • /
    • 2016
  • To improve the shelf-life of mushrooms, Lentinula edodes GNA01 mushrooms were treated with gel packs containing slow-released chlorine dioxide ($ClO_2$) gas at 5~10 ppm for 5 days at $20^{\circ}C$ and the weight loss rate as well as the changes in pH, color and texture properties of the treated samples were investigated. The weight of the control and $ClO_2$ gas treated samples were decreased slightly, and there were no differences during the storage period. However, the weight of the control changed faster than those of the $ClO_2$ gas treated samples during storage period. The pH in the control and in the $ClO_2$ gas treated samples were decreased during storage period, but the samples treated with 5 and 7 ppm $ClO_2$ gas were the least changed. On the other hand, the samples treated with 10 ppm $ClO_2$ gas showed no difference from the other treatments during 4 days, but the pH was lower than that of the control on the fifth day. The lightness of inside and outside in mushroom were decreased whereas redness and yellowness were increased during storage period. However, color changes in the $ClO_2$ gas treated samples were lower than those of the control. Especially, the samples treated with 5 and 7 ppm $ClO_2$ gas were the least changed. The texture of the mushroom were decreased consistently during storage period. The texture of the control changed faster than those of the $ClO_2$ gas treatments during 5 days. Especially, the samples treated 5 ppm $ClO_2$ gas were the least changed.

Extraction Equilibria of Succinic Acid by Using Aqueous Two Phases System Containing Imidazolium Ionic Liquids and Salts (이미다졸계 이온성액체와 염을 포함한 수상이성분계를 이용한 숙신산의 추출 평형)

  • Lee, Yong Hwa;Kang, Jeong Won;Hong, Yeon Ki;Kim, Ki-Sub
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.349-353
    • /
    • 2014
  • Succinic acid is an important precursor in industries producing biopolymers, pharmaceutical and food additives and green solvents. However, due to the high price of petroleum and the global $CO_2$ emission, the biological production of succinic acid from renewable biomass is a novel process due to the fixation of $CO_2$ into succinate during fermentation. In this study, aqueous two phase systems based on imidazolium ionic liquids/$K_2HPO_4$ were used as an effective separation and concentration process for succinic acid. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of imidazolium ionic liquids to aqueous $K_2HPO_4$ solutions in the presence of succinic acid. It can be found that the ability of imidazolium ionic liquids for phase separation followed the order [HMIm][Br]${\fallingdotseq}$[OMIm][Br]>[BMIm][Br]>[EMIm][Br]. The maximum value of extraction efficiency for succinic acid was about 90% and the amount of coextracted water into top phase is proportional to the chain length of cation in imidazolium ionic liquids. It was concluded that the aqueous two phase systems composed of imidazolium ionic liquids/$K_2HPO_4$ was effective for the selective extraction and concentration of succinic acid.

A Study of the Improvement Plan and Real Condition Estimation of Fire Protection Safety Management for Power Plants in Korea (국내발전소 소방안전관리 운영실태조사 및 개선방안에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.61-73
    • /
    • 2017
  • The Fukushima Nuclear Disaster in 2011 and California Power Failure in 2001 are examples of the importance of the power plant safety management that caused huge national loss with a power-related mass casualty incident. In a situation where humans cannot live without electricity, efforts to strengthen the systematic firefighting safety management in power plants that produce electricity with large amounts of hazardous materials as fuel, such as nuclear energy, coal and gas, are essential to protect life and prevent property loss and stable economic growth from fire explosion accident or radiation leak due to the negligence of safety management and natural disasters such as earthquakes, which has recently become an issue. This study examined the operating situation of firefighting safety management in power plants with firefighting officials employed by five power generation companies including Korea Southern Power Co., Ltd. and Korea Hydro & Nuclear Power Co. Ltd., which are in charge of the domestic power supply. As a result, for the systematic firefighting safety management of power plants, improvement plans were drawn, including the development of an effective business manual and a comprehensive management system, the substantiality of firefighting safety education, and the strengthening of seismic designs to prepare for earthquakes.