• Title/Summary/Keyword: $CO_2$ 가스화

Search Result 828, Processing Time 0.025 seconds

Current status of CCU technology development (CCU 기술개발 국내외 기술동향)

  • Sim, Jae-Gu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.517-523
    • /
    • 2016
  • South Korea is the 8th biggest greenhouse gas emitter in the world due to its phenomenal economic growth based on manufacturing, and it is ranked first among OECD members for the rate of increase in emissions. Thus, the Korea government has voluntarily presented a reduction target and demonstrated global leadership. For the reduction of nation's GHG emission, importance of CCU(Carbon Capture and Utilization) along with CCS(Carbon Capture and Storage) technology development is increased. CCU technology is $CO_2$ utilization technology for the usage of $CO_2$ from flue gas and it can create a new economic value while reducing $CO_2$ emission. Therefore, with continued technology development, the number of application of CCU technology is increasing globally.

Development of Carbon Dioxide Emission Factor from Resource Recovery Facility (폐기물자원회수시설의 이산화탄소 배출계수 개발)

  • Kim, Seungjin;Im, Gikyo;Yi, Chi-Yeong;Lee, Seehyung;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • To address the problems associated with climate change and energy shortage, Korea has been making efforts to turn waste materials into usable energy. Due to the ongoing efforts to convert waste materials into energy, waste incineration is expanding to utilize the heat generated, and the subsequent greenhouse gas emissions from these waste material incineration are expected to increase. In this study, a municipal waste incineration plant that generates heat and electricity through heat recovery was selected as a subject facility. Methods for estimating the greenhouse gas emissions in the municipal waste incineration plant that was selected as a subject plant were sought, and the greenhouse gas emissions and emission factor were estimated. The $CO_2$ concentrations in discharge gas from the subject facility were on average 6.99%, and the result from calculating this into greenhouse gas emissions showed that the total amount of emissions was $254.60ton\;CO_2/day$. The net emissions, excluding the amount of greenhouse gas emitted from biomass incineration, was shown to be $110.59ton\;CO_2/day$. In addition, after estimating the emissions by separating the heat and electricity generated in the incineration facility, greenhouse gas emission factors were calculated using the greenhouse gas emissions produced per each unit of output. The estimated emission factor for heat was found to be $0.047ton\;CO_2/GJ$ and the emission factor for electricity was found to be $0.652ton\;CO_2/MWh$. The estimated emission factor was shown to be about 17% lower than the $0.783ton\;CO_2/MWh$ emission factor for thermal power plants that use fossil fuels. Waste material types and fossil carbon contents were evaluated as being the factors that have major effects on the greenhouse gas emissions and emission factor.

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.

Mineral Carbonation of High Carbon Dioxide Composition Gases Using Wollastonite-distilled Water Suspension (규회석-증류수 현탁액을 이용한 고농도 CO2 가스의 탄산염 광물화)

  • Song, Haejung;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.342-351
    • /
    • 2014
  • The present paper investigates the performance of direct wet mineral carbonation technology to fix carbon dioxide ($CO_2$) from relatively high $CO_2$ concentration feeding gas using wollastonite ($CaSiO_3$)-water (and 0.46 M acetic acid) suspension solution. To minimize the energy consumed on the process, the carbonation in this work is carried out at atmospheric pressure and slightly higher room temperature. As a result, carbon fixation is confirmed on the surface of $CaSiO_3$ after carbonation with wollastonite-water suspension solution and its amount is increased according to the $CO_2$ composition in the feeding gas. The leaching and carbonation ratio of wollastonite-water suspension system obtained from the carbonation with 50% of $CO_2$ composition feeding gas is 13.2% and 10.4%, respectively. On the other hand, the performance of wollastonite-acetic acid in the same condition is 63% for leaching and 1.39% for carbonation.

Combined Removal of n-heptane and CO using Plasma-catalytic Process (플라즈마/촉매 공정을 이용한 n-헵테인과 일산화탄소 동시제거)

  • Lee, Sang Baek;Jo, Jin Oh;Mok, Young Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • Combined removal of n-heptane and carbon monoxide (CO) using a plasma-catalytic process was investigated. The performance of the plasma-catalytic process was compared with that of the catalyst-alone process to characterize the decomposition of n-heptane and CO with the operation parameters such as the type of catalyst, reaction temperature, and discharge power. From several sets of experiments, it was found that the decomposition efficiency of n-heptane mainly depended on the specific input energy rather than the reactor temperature, whereas the oxidation of CO on both the energy density and the reaction temperature. The results conducted over several metal oxide catalysts exhibited that the decomposition efficiency of n-heptane was in the order: $Pd/{\gamma}-Al_2O_3$ > $Ru/{\gamma}-Al_2O_3{\approx}Ag/{\gamma}-Al_2O_3$. Especially, $Pd/{\gamma}-Al_2O_3$ catalyst did hardly generate CO as a byproduct during the decomposition of n-heptane under an appropriate condition, revealing $CO_2$ selectivity of nearly 100%. The CO oxidation efficiency was largely affected by the type of catalyst ($Pd/{\gamma}-Al_2O_3$ > $Ru/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$). At temperatures below $180^{\circ}C$, the plasma-catalytic process was more effective in the oxidation of CO, while above $180^{\circ}C$, the catalytic process resulted in slightly higher CO oxidation efficiency.

A Study on the Emission Factor of NOx and CO by Burning of Synthetic Biogas (합성 Bio-Gas 연소시 발생되는 질소산화물과 일산화탄소 배출에 관한 연구)

  • An, Jae-Ho;Kim, Tae-Wan;Lee, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • In view of energy supply, biogas can be seen as alternative fuel by substituting considerable amount of fossil fuel and may be utilized for heat and power production or for transport fuel production ($CH_4-enriched$ biogas). The aim of this research is to analyse the emission of $NO_x$ and CO from biogas fired combustion engine for electric power production. The result indicate a significant effect of biogas composition ($CH_4-CO_2$ ratio) and biogas flow rate on the air pollutants emission. The emission factors from this study were compared with those of U.S. EPA. Low $CH_4-CO_2$ ratio condition typically shows the lower $NO_x$ and CO emission than higher $CH_4-CO_2$ ratio condition. At normal $CH_4-CO_2$ ratio (7:3) emission factors of $NO_x$ and CO were 1.29 and 30.43 g/MMBtu, respectively. At low $CH_4-CO_2$, ratio (6:4) emission factors of $NO_x$ and CO were 0.646 and 60.86 g/MMBtu, respectively, It should be emphasized that the actual emission may vary considerably from these results due to operating conditions including torque load and engine speed.

Water-Splitting and Highly Active Catalysts Technology for CO2 Reduction (물 분해와 CO2 환원을 위한 고활성 촉매기술)

  • Chung, Pyung Jin
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.30-50
    • /
    • 2017
  • Currently, exhaust gas emitted from thermal power plants and various combustion facilities that consume large amounts of fossil fuels such as coal, oil, and natural gas contains high concentrations of $CO_2$ and is a major cause of global warming. Conventionally, as a countermeasure against this problem, research and development are being carried out from various fields, and it is considered to be one of the most promising methods for separating and recovering $CO_2$ in the exhaust gas. One of the reasons for the low use of carbon dioxide is oxidized among the carbon compounds and is present in the most stable state. From the viewpoint of $CO_2$ emissions, $CO_2$ immobilization technology, which converts $CO_2$ into chemically useful compounds, is considered to be more important.

A study of Synthesis Gas Production from Municipal Solid Waste (생활 폐기물로부터의 합성 가스 전환 연구)

  • 이정묵;유보선;조성수;변용수;이협회
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.627-631
    • /
    • 2003
  • 본 연구는 폐기물로부터 CO와 H$_2$가 주성분인 합성 가스를 얻는 방법에 대한 것으로, 주요 반응으로는, 폐기물 내의 탄소, 수소 성분과 외부에서 공급된 산소와의 발열반응인 부분연소 반응과 부분 연소 반응에 의해 생성된 이산화탄소와 물이 미 반응 탄소와의 흡열 반응인 가스화 반응으로 구성된다.(중략)

  • PDF

Research on emission test procedures and permissible standards of automobile exhaust gases (자동차배출가스 허용한도 및 검사방법)

  • 이문득;김준용;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.31-39
    • /
    • 1980
  • 복지사회적 목표에서의 도시계획 및 교통문제는 환경보전의 측면에서 상충되는 관계가 이루어 지고 있다. 특히 대도시에서 자동차의 배출가스에 의한 대기오염은 매우 심각한 관계에 이르고 있다. 우리나라에서도 앞으로 급증할 것으로 예상되는 자동차 증가율과 상대적으로 협조한 도 로의 점유율 및 이에 따른 자동차 주행 pattern의 불규칙성을 감안하면 외국과 같은 규제기준의 설정이 필요하다. 자동차 배출가스에 의한 대기오염의 심각성은 배출가스중에 들어있는, 일산 화탄소(CO), 탄화수소(HC), 질소산화물(NOx), 알데히드, 연화합물 및 발암성 방향족화합물 등 으로, 이것은 인체에 유해한 영향을 주고 있다. 이와 같은 실정에서 인간의 건강을 공해로부터 보호하기 위한 기준으로 세계보건기구 WHO 는 1972년 "WHO Technical Report Series, No.506" 에서 SO$_{2}$ 분진 일산화탄소 및 photochemical 에 대하여 기준 목표를 설치하였다.목표를 설치하였다.

  • PDF

Experimental Study on Combustion Instability Characteristics of Model Gas Turbine Combustor at Various H2/CH4/CO Composition (H2/CH4/CO 연료조성 변화에 따른 모형 가스터빈 연소기 불안정 특성에 대한 실험적 연구)

  • Yoon, Jisu;Lee, Min-Chul;Joo, Seongpil;Kim, Jeongjin;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.67-74
    • /
    • 2013
  • IGCC(Integrated Gasification Combined Cycle) system is candidates which can solve the environmental problems including global warming, since it can be easily combined with CCS(Carbon Capture System). In this research, combustion instability characteristics were studied at various fuel which are composed of $H_2/CH_4/CO$ mixture. Mode analysis for instabilities observed experimentally was conducted and the linearly increasing tendency of frequency was observed as the hydrogen content in fuel increases.