• Title/Summary/Keyword: %24COD_T%24

Search Result 103, Processing Time 0.044 seconds

고효율 자외선/광촉매 시스템을 이용한 고농도 유기성 폐수처리

  • Jeong, Hyo-Gi;Kim, Jung-Gon;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.272-276
    • /
    • 2005
  • Food wastewater derived from three-stages methane fermentation system showed high concentrations of sCOD, T-N and $NH_{3}-N$. To treat the organic wastewater, the optimal operating conditions for high efficiency $UV/TiO_{2}$ photocotalytic system have been investigated. In the first process, wastewater was pre-treated with $FeCl_{3}. The optimum pH and concentration for coagulation were 4.0 and 2000 mg/L, respectively. Through this process, 52.6% of $COD_{cr}$ was removed. The second process was $UV/TiO_{2}$ photocatalytic reaction. The optimum conditions for the operation of $UV/TiO_{2}$ photocatalytic system developed in this lab have been studied. In this process, CODcr was removed from 2890 to 184 mg/L and T-N was removed from 2496 to 914 for 24 hours, respectively.

  • PDF

Outflow Loads of Total Nitrogen, Total Phosphorus, and COD in Mountain Stream Water (산지 계류수에서의 총질소, 총인 및 COD의 유출부하)

  • Kim, Jin-Soo;Kim, Sun-Jong;Oh, Kwang-Young;Oh, Seung-Young;Kim,Je-Su;Jeong, Young-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.787-797
    • /
    • 2003
  • The characteristics of concentrations and loads of Total Nitrogen(T-N), Total Phosphorus(T-P), and Chemical Oxygen Demand (COD) in mountain stream water were examined from September 2000 through August 2001. The 92.5-ha study watershed in Chungbuk Province consists of 59% mixed forest and 30% coniferous forest. Streamflow was measured and water samples were collected at about 10 day intervals for dry days and at 2-6 hour intervals for a storm event at the study watershed outlet. The mean concentration of COD in streamflow for rainy days was significantly (p < 0.05) higher than for dry days. The mean concentrations of T-N and T-P in vegetation growing season (May to October) were lower than those in vegetation dormant season (November to April). Low concentrations of pollutants during vegetation growing season are likely due to the heavy demand for nutrients by the vegetation and biological activity associated with a warming of soil. The ratios of pollutants loads during storm periods to annual pollutants loads were 87% for T-N, 83% for T-p, and 87% for COD. The unit loads of pollutants for study area were estimated at 5.9 kg/ha $\cdot$ yr for T-N, 0.15 kg/ha $\cdot$ yr for T-p, and 23.9 kg/ha $\cdot$ yr for COD. The removal efficiency of pollutants in study area were 24% for T-N, 58% for T-P and 66% for COD, indicating that a study area shows water purification function.

Sewage Treatment using Membrane Bioreactor(MBR) and Reverse Osmosis(RO) Process (Membrane bioreactor(MBR)과 Reverse osmosis(RO) 공정을 이용한 하수처리)

  • Oh, Seungwook;Jung, Jongtae;Lee, Jinwoo;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • The objective of this study was to investigate the effect of hydraulic retention time (HRT) on removal efficiencies of organic matter, nitrogen and phosphorus in MBR-RO process for treating synthetic sewage. In MBR process, turbidity was less than average 2 NTU and average removal efficiency showed more than 99% during the operation period(MBR 105 day). As a result of HRT variation, average removal efficiencies of $COD_{Cr}$ on HRT 6, 12, 18 and 24hour were about 72.4, 84, 88.6 and 92.5%, respectively. The $NH_4{^+}-N$ removal efficiency was about 60.2 85.5, 91.3 and 92.2%, respectively. T-N and T-P removal efficiencies increased from 53.7 and 56.8 to 82.5 and 86.4%, respectively as the HRT increased from 6 hour to 24 hour. In RO process, average removal efficiencies of color and $COD_{Cr}$ in RO permeate were about 99.9% and 96.8%, respectively. Also, removal efficiencies of T-N, $NH_4{^+}-N$, $NO_3{^-}-N$ and T-P were all above average 90%.

  • PDF

A Study on the filtering bed of porous sintering-product and hydrophytes for sewage treatment (오·폐수처리를 위한 수생식물 다공성 소결체여상의 기초연구)

  • Kim, Ju-Hyung;Yun, Chan;Oh, Joon-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.89-97
    • /
    • 2001
  • The purpose of this study was to find the optimum condition of the high removal efficiency of water pollutant as sewage treatment technology using a filtering bed charged with porous sintering-pellet which was planted with hydrophytes. Experiment was carried out by changing concentration of water pollutants(COD, T-N, T-P), kind of hydrophyte, kinds of filtering material and size, and HRT. The result of removal efficiency was obtained as following: COD removal 73.8~87.1% for input concentration range of 50~450mg/L, T-N removal 61.3~77.3% for input concentration range of 7~124mg/L, T-P removal 89.5~99.1% for input concentration ranger of 3~27mg/L. In a comparative experiment of three kinds of hydrophyte(Iris pseudoacorus, Phragmites communis $T_{RIN}$., Oenanthe javanica Dc.), the best removal efficiency of COD and T-N was gained with Iris pse-udoacorus, and Phragmites communis $T_{RIN}$ showed better result than two hydrophytes for the removal efficiency of T-P. In a comparative experiment of four kinds of filtering-materials, the removal efficiencies were in the order of porous sintering-pellet, gravel, nonused-tire and nonused-concrete. It was found that for the porous sintering-pellet, the smaller its diameter, the better its result. In the filtering bed in which was charged with porous sintering-pellets of 5mm diameter and planted with Iris pseudoacorus, the removal efficiency of COD, T-N and T-P were over 80%, 70% and 90% under the concentration of COD 250mg/L, T-N 70mg/L and T-P 15mg/L for 24hrs treatment. Thus, we concluded that a filtering bed charged with porous sintering-pellet and planted with hydrophytes will be suitable for treatment of sewage water as a pro-natural treatment technology.

  • PDF

Membrane-Coupled Sequencing Batch Reactor System for the Advanced Treatment of Rural Village Sewage (막결합 연속회분식 반응기를 이용한 농촌마을 하수의 고도처리)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.20-30
    • /
    • 2014
  • A membrane-coupled sequencing batch reactor (MSBR) was used for the advanced treatment of rural village sewage which is very low C/N ratio. The effect of powdered activated carbon, aeration rate, and external organic material loadings on the treatment efficiency and filtration performance were investigated in sequencing batch reactor, in which a flat-sheet type microfiltration membrane with a pore size of $0.4{\mu}m$ was submerged. At the initial operation (within 54 days) MLSS concentration, and the removal efficiencies of COD, T-N, and T-P were increased with the increase of C/N ratio. After 89 days the removal efficiencies of COD, T-N, and T-P were 97.1%, 75.0%, and 48.3%, respectively. Suspended solid-free effluent was obtained by membrane filtration. The T-P removal was relatively low because of depending on the amount of excess sludge wasting. During the operation of MSBR with powdered activated carbon, the particle size of the sludge reduced by the increase of collision frequency and mixing intensity. In comparison with MSBR without powdered activated carbon, TMP of MSBR with that was significantly elevated.

Estimating of Pollutant Load at Paddy Field Area (광역논에서의 오염물질 부하량 산정)

  • Kim, Byoung-Hee;Yoon, Chun-Gyeong;Hwang, Ha-Sun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.509-512
    • /
    • 2001
  • In this study, pollutant load from paddy field was estimated by regression equation from 5 to 8 in 2001. During study period, total rainfall was 511.3mm and runoff discharge was 968.71mm. Regression equation between flow rate(m3/s) and pollutant loading rate(g/s) is exponential relationship. For site 1, coefficient of determination (R2) for $COD_{cr}$, T-P, T-N were 0.7068, 0.8441, 0.6806 respectively and site 2, 0.9369, 0.8855, 0.4262 respectively. Considering unit loads, Jun was the highest valus as 13.85 $COD_{c}kg/km2/day$, 0.24 T-Pkg/km2/day, 1.22 T-Nkg/km2/day. Until study period, total $COD_{cr}$ load estimated regression equation is 19.32kg/km2/day and, T-P, T-N were 0.264, 1.88 respectively

  • PDF

Further Treatment of Constructed Wetland Effluent using Filter Materials (여재를 이용한 인공습지 유출수 추가처리)

  • Haam, Jong-Hwa;Kim, Hyung-Joong;Kim, Yeong-Kyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.9-16
    • /
    • 2009
  • Further treatment facility using various filter materials was evaluated to treat effluent of constructed wetland. Further treatment facility was installed with 1m length in outlet of 3 constructed wetland (unplanted constructed; reed bed constructed wetland; cattail bed constructed wetland) using 3 filter materials (slag, activated carbon, oyster shell). Flow rate of three further treatment facility was 63 $m^3$/day (slag), 19 $m^3$/day (activated carbon), and 81 $m^3$/day (Oyster shell). COD removal rate of slag, activated carbon, and oyster shell was 6 %, 24 %, 1 %, and removal mass was 32 g/day, 30 g/day, and 5 g/day, respectively. All of further treatment facility was effective to removal organic materials. T-N and T-P removal rate of activated carbon was 24 % and 4 %, and slag and oyster shell was not effective to remove T-N and T-P. Overall, further treatment facility was effective to remove organic mater, constructed wetland combined with further treatment facility can remove nutrient and organic matters effectively.

  • PDF

Advanced Treatment of Liquid Fertilizer from Livestock Night Soil Treatment Facility by Membrane Separation Processes (분리막 공정을 이용한 축산분뇨 처리장 액비의 고도처리)

  • Kim, Joo-Hye;Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.142-150
    • /
    • 2014
  • This paper is to develop the process suitable for the advanced treatment of liquid fertilizer from the livestock night soil treatment facility (biogas plant). Nanofiltration (NF) and reverse osmosis (RO) process was used, respectively, for the advanced treatment of liquid fertilizer. And membrane bioreactor (MBR) with and without biomedia were tested, respectively, for the pretreatment. It was found that almost T-N of the liquid fertilizer was composed of ammoniacal nitrogen. Transmembrane pressure of MBR with biomedia increased slowly during the operation time, while that of MBR without biomedia increased rapidly at the initial time. But there was no difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosage of biomedia. When the liquid fertilizer was pretreated by MBR with biomedia, the removal efficiencies of COD, T-N, and T-P were 99.8, 86.5%, and 99.8% by NF, and 99.9, 86.8%, and 99.8% by RO, respectively. Compared with the effluent quality standards of the livestock night soil treatment facility, the water quality treated by MBR and NF/RO process met the standard for COD and T-P, but exceeded the permitted standard for T-N. In order to meet the effluent quality standard for T-N, it is necessary to change the MBR operation cycle or to add the secondary treatment by NF/RO.

The Nutrients Removal in Aerobic High Rate Ponds Through the Lighting Period (빛의 조사기간으로 본 호기성 고율 안정조 프로세스의 영양물질 제거)

  • 공석기
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • It is not too much to say that the territorial inhabitants' concerns are wholly c concentrated on the environmental preservation-problem and development-problem in Korea given effect to the local self-government system. At a time like this I was studied the effect on nutrients removal through lighting period in aerobic high rate pond and we know that waste stabilization pond method is the most economical and energy saving wastewater treatment technology than others. At the results which was studied through operating the reactor-l artifically main-tained at a temperature, $25^{\circ}C$, a light intensity, 3000lux, and a lighting period, 24hrs and the reactor-2 artifically maintained at a tern야rature, $25^{\circ}C$ and a light intensity 3000lux, and a lighting period period, 12hrs, It has appeared for 24hrs.-lighting period -reactor-1 to be prior to the reactor-2. The attained results are that 1. reactor-1 is prior to reactor-2 on oxygen-generation 2. reactor-1 is prior to reactor-2 on algal production 3. COD removal efficiency, 90.76%, T-N removal efficiency, 80%, T-P removal e efficiency, 74.47 % in reactor-2, in reactor-1 COD removal efficiency, 94.85 %, T-N removal efficiency, 98.07%, T-P removal efficiency, 72.13% are, so the treatment efficiency of reactor-1 is more excellent than things of reactor-2 4. it appeared that the detention time is 8, 9days.

  • PDF

Quantity and Characteristics of Manure by Holstein Milking Cow (홀스타민 착유우의 분뇨배설량과 이화학적 제특성)

  • 최동윤;강희철;최희철;곽정훈;김태일;김재환;한정대;최홍림
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.169-172
    • /
    • 2001
  • This research was carried out to investigate the quantity of Holstein milking cow manure excreted and their characteristics. The average body weight of the Holstein milking cow during experiment was 550.0kg, and fried intake(DM basis), water consumption, milk yield was 16.7, 85.4, 24.4k7/day/head, repectively. The average manure production of Holstein milking cow was 63.5kg/day/head(feces 42.3, urine 10.2kg). The average moisture content of feces and urine was 83.9%, 96.9%, respectively. Wastewater pollutant concentration of $BOD_5$(Biochemical Oxygen demand). $COD_{Mn}$ (Chemical Oxygen demand), SS(Suspended Solids), T-N(Total Nitrogen) and T-P(Total Phosphorus), excreted from Holstein milking cow was 16,560, 40,329, 78,500, 2,854, 577mg/ l in feces and 4,580, 7,575, 370, 4,164, 7mg/ l in urine, repectively.

  • PDF