• 제목/요약/키워드: $CH_4$ Production

검색결과 526건 처리시간 0.026초

Na+/MgO 촉매상에서 메탄의 Oxidative Coupling 반응의 속도론적 해석 (Kinetic Analysis of Oxidative Coupling of Methane over Na+/MgO Catalyst)

  • 서호준;선우창신;유의연
    • 공업화학
    • /
    • 제5권4호
    • /
    • pp.580-587
    • /
    • 1994
  • 고정층 상압 유통식 반응기에서 메탄의 전화율 10% 미만의 범위에서 $Na^+(50wt%)/MgO$ 촉매를 사용하여 반응온도 710, 730, 750, 770, $790^{\circ}C$에서 메탄과 산소의 분압을 변화시켜 가면서 메탄의 oxidative coupling반응을 수행하여 이산화탄소와 에탄의 생성속도를 구하고 curve fitting으로 속도식을 증명하였다. Langmuir-Hinshelwood, Rideal-Redox, Eley-Rideal형 반응 메카니즘 중에서 Langmuir-Hinshelwood형 반응 메카니즘이 실험 결과와 가장 잘 일치하였으며, $CH_3{\cdot}$의 생성에 관여하는 산소종은 촉매 표면의 $O_2{^-}$ 또는 $O_2{^{2-}}$으로 제시할 수 있었고, 이때의 활성화 에너지는 약 39.3kcal/mol이었다. 또한, curve fitting결과 $CO_x$을 생성하는 산소의 화학 양론계수 x는 약 1.5이었으며, 이로부터 $CH_3{\cdot}$의 일부가 표면산소에 의해서 산화반응을 거쳐 $CH_3O_2{\cdot}*$ 형성을 추측할 수 있었다.

  • PDF

메탄/순산소 혼합층에서 edge flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

메탄/순산소 혼합층에서 Edge Flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회지
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산 (Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production)

  • 이채영;유규선;한선기
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

식물원료 첨가가 In vitro 반추위 메탄가스 발생에 미치는 영향 (The Effect of Vegetable Sources Supplementation on In vitro Ruminal Methane Gas Production)

  • 양승학;이세영;조성백;박규현;박중국;최동윤;유용희
    • 한국축산시설환경학회지
    • /
    • 제17권3호
    • /
    • pp.171-180
    • /
    • 2011
  • 각 시판되고 있는 식물을 2개의 그룹으로 나눠 첨가 후 각 시간별 배양을 실시한 후 pH, $NH_3$, VFA 발생량, 총 가스발생량, $H_2$, $CO_2$, $CH_4$ 발생량을 조사하였다. 그룹 1은 상추와 대파첨가구에서 암모니아 농도가 높았고 고추첨가구에서 낮았다 (P<0.05), 그룹 2는 마늘첨가구에서 암모니아 농도가 낮았고 (P<0.05) 깻잎, 무순과 부추첨가 구에서 높았다 (P<0.05). 마늘과 고추첨가구에서 단백질분해과정 중 아미노산에서 암모니아로 분해되는 과정에 영향을 미쳤을 것으로 사료된다. 총 VFA 농도는 대파첨가구에서 유의적으로 높았으나 (P<0.05) 그 외 시험구에서는 대조구와 차이가 없었다. Acetate와 propionate의 비율에서 볼 때 마늘첨가구가 propionate의 량이 상대적으로 증가한 것을 알 수 있었다. 모든 처리구가 대조구에 비해 가스발생량이 대체로 높았으며, 대파와 양파 첨가구가 유의적으로 높았다 (P<0.05). 마늘과 깻잎 첨가구를 제외한 모든 처리구에서 가스 발생량이 유의적으로 높았다 (P<0.05). 생강목에 속하는 강황과 생강첨가구는 pH와 총 가스발생량에서 비슷한 결과를 나타냈으며 in vitro 발효를 높였다. 마늘첨가구는 반추위내 총 가스발생량이 대조구와 유의적인 차이가 없었다 (P<0.05). 모든 시험구에서 총 가스발생량과 $CO_2$ 발생량은 대체로 유사한 경향을 보였다. 마늘첨가구는 총 가스발생량은 대조구와 차이가 없었으나 $CO_2$ 발생량은 대조구보다 유의적으로 높았다 (P<0.05). 마늘첨가구의 $CH_4$ 발생량은 배양시간과 관계없이 매우 낮은 수준을 유지했으며 48시간 배양 후 대조구의 약 1/3 수준으로 낮았다 (P<0.05). $H_2$는 거의 모든 시험구에서 미량 발생되었는데, 대조적으로 마늘첨가구에서만 매우 높은 수준으로 검출되었다. 마늘첨가구에서 g단위 DM 당 $CH_4$ 발생량이 현저히 낮았으며 다른 처리구는 대체로 대조구에 비해 높았다. 본 시험에서는 allium속의 마늘, 부추, 양파, 파를 포함한 시판 중인 채소를 이용하여 in vitro 발효조절시험을 실시하였는데 특정 식물들은 in vitro 발효 대사에 영향을 주었으며 특히 마늘 첨가는 $CH_4$ 생성에 직접적으로 영향을 준 것으로 사료된다.

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • 제60권11호
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Weissella cibaria CMU suppresses mgl gene expression and enzyme activity associated with bad breath

  • Kim, Hyun-Jin;Yeu, Ji-Eun;Lee, Dong-Suk;Kang, Mi-Sun
    • International Journal of Oral Biology
    • /
    • 제44권4호
    • /
    • pp.152-159
    • /
    • 2019
  • The oral care probiotic strain Weissella cibaria CMU (oraCMU) inhibits volatile sulphur compounds associated with halitosis, presumably by inhibiting the growth of associated oral pathogens. In the present study, we investigated whether oraCMU inhibits the production of these compounds by suppressing the expression of mgl. This gene encodes L-methionine-α-deamino-γ-mercaptomethane-lyase (METase) and is involved in the production of methyl mercaptan (CH3SH) by Porphyromonas gingivalis. Therefore, we specifically investigated the effects of oraCMU on the growth, CH3SH production, METase activity, and mgl expression of P. gingivalis. The minimum inhibitory concentrations of cell-free supernatant and secreted proteins from oraCMU were 125 mg/mL and 800 ㎍/mL, respectively. At sub-minimum inhibitory concentration levels, these metabolites inhibited CH3SH production, but they also reduced P. gingivalis viability. Only heat-killed oraCMU decreased CH3SH production without affecting P. gingivalis viability. Heat-killed oraCMU also inhibited METase activity toward L-methionine and mgl mRNA expression (p < 0.05). In summary, we demonstrated the inhibition of volatile sulphur compounds via the antimicrobial action of oraCMU and, for the first time, the inhibition of such compounds by heat-killed oraCMU, which occurred at the molecular level.

Reducing CH4 Emissions from Grazing Ruminants in New Zealand: Challenges and Opportunities

  • Clark, H.;Kelliher, F.;Pinares-Patino, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.295-302
    • /
    • 2011
  • Almost half of New Zealand's greenhouse gas emissions arise from agriculture and enteric methane ($CH_4 $) emissions arising from ruminant animals constitute 30% of total $CO_2$-e emissions. Enteric $CH_4$ emissions have increased by 9% since 1990. Extensive research has been undertaken to develop reliable methods for measuring enteric $CH_4$ emissions. New Zealand studies using the SF6 tracer technique suggest that on average this technique yields similar values to the 'gold' standard of calorimetry, but with a larger variance. National inventory estimates based on results obtained using the $SF_6$ technique will therefore overestimate the uncertainty. Mitigating emissions can be achieved by changing feed type but there are practical and cost barriers to the use of alternative feeds. Forages containing condensed tannins do reduce emissions but are agronomically inferior to the forages currently used. Rumen additives have shown some success in-vitro but results from in-vivo trials with both monensin and fumaric acid have been disappointing. The development of methods for directly manipulating rumen microorganisms are at an early stage and work to develop vaccines that can inhibit methanogenesis has yielded mixed results. The successful identification of sheep with contrasting $CH_4$ yields raises the possibility that, in the long term, a breeding approach to $CH_4$ mitigation is feasible.

수거 형태에 따른 음식물류 폐기물의 혐기성 분해 특성 (Biodegradation Characteristics of food waste on various collection systems)

  • 최재민;김정광;이채영
    • 유기물자원화
    • /
    • 제23권1호
    • /
    • pp.23-28
    • /
    • 2015
  • 본 연구는 회분식 실험을 통해 수거 형태에 따른 음식물류 폐기물의 혐기성 분해 특성을 평가하였다. 일반 종량제 봉투 내 음식물류 폐기물 (sample A)의 경우 최종 메탄 수율은 $285.6mL\;CH_4/g$ volatile solids (VS)로 가장 낮게 나타났으며 반응 속도는 $0.215d^{-1}$로 가장 높게 나타났다. RFID 기반의 폐기물 용기 내 음식물류 폐기물 (sample C)의 최종 메탄 수율 $493.4mL\;CH_4/g$ VS로 가장 높게 나타났으며 반응 속도는 $0.162d^{-1}$로 가장 낮게 나타났다. 모든 시료의 율속 단계 결정 계수는 양수로 나타나 메탄 생성 단계가 율속 단계인 것으로 나타났다.

열적-알칼리성 전처리 유무에 따른 폴리하이드록시부티레이트의 고온 혐기성 소화 영향 연구 (Thermophilic Anaerobic Digestion of Polyhydroxybutyrate with and without Thermo-alkaline Pretreatment)

  • 이지현;이준엽
    • 한국환경과학회지
    • /
    • 제33권2호
    • /
    • pp.121-129
    • /
    • 2024
  • The study investigated the effect of thermo-alkaline pretreatment on the solubilization of polyhydroxybutyrate (PHB) and its potential to enhance of thermophilic anaerobic digestion, focusing on biochemical methane potential (BMP) and methane production rate, using two different particle sizes of PHB (1500 ㎛ and 400 ㎛). Thermo-alkaline pretreatment tests were conducted at 90 ℃ for 24 hours with varying NaOH dosages from 0-80% (w/w). BMP tests with untreated PHB exhibited methane production ranging from 150.4~225.4 mL CH4/g COD and 21.5~24.2 mL CH4/g VSS/d, indicating higher methane production for smaller particle sizes of PHB, 400 ㎛. Thermo-alkaline pretreatment tests achieved a 95.3% PHB solubilization efficiency when 400 ㎛ PHB particles were treated with 80% NaOH dosage at 90 ℃ for 24 hours. BMP tests with pretreated PHB showed substantial improvement in thermophilic anaerobic digestion, with an increase of up to 112% in BMP and up to 168% in methane production rate. The results suggest that a combined pretreatment process, including physical (400 ㎛ PHB particles) and thermo-alkaline (90 ℃, 40-80% NaOH dosage, and 24 hours reaction time), is required for high-rate thermophilic anaerobic digestion of PHB with enhanced methane production.