• Title/Summary/Keyword: $CH_4$ Flux

Search Result 83, Processing Time 0.026 seconds

Analysis of Greenhouse Gas Research Trends of Hydropower Dams: Focusing on Foreign Cases (수력발전댐에서 온실가스 연구 동향 분석 : 국외 사례를 중심으로)

  • Park, Kyoung-deok;Jo, Won Gi;So, Yoon Hwan;Kang, Dong-hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.195-213
    • /
    • 2022
  • This research summarizes the generating factors of greenhouse gas (carbon dioxide, methane, nitrous oxide) in hydropower dams and related domestic/foreign researches. Microorganisms and eutrophication are the main factors in greenhouse gases in hydropower dam reservoirs. The greenhouse gas emission from the hydropower dam is affected by meteorological factors and dam operation periods, and greenhouse gases are also emitted from the outlets. The fluxes of greenhouse gas emission from the hydropower dams were -926~180,806 mg CO2 m-2d-1, -0.19~3800 mg CH4 m-2d-1, and 0.01~16.1 mg N2O m-2d-1. In South Korea, the study on the greenhouse gas emission from Korean hydropower dams has been rarely, and therefore it is inquired. This research suggested the methods on the greenhouse gas emission from Korean hydropower dams and flux calculation.

Changes and Improvements of the Standardized Eddy Covariance Data Processing in KoFlux (표준화된 KoFlux 에디 공분산 자료 처리 방법의 변화와 개선)

  • Kang, Minseok;Kim, Joon;Lee, Seung-Hoon;Kim, Jongho;Chun, Jung-Hwa;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.5-17
    • /
    • 2018
  • The standardized eddy covariance flux data processing in KoFlux has been updated, and its database has been amended accordingly. KoFlux data users have not been informed properly regarding these changes and the likely impacts on their analyses. In this paper, we have documented how the current structure of data processing in KoFlux has been established through the changes and improvements to ensure transparency, reliability and usability of the KoFlux database. Due to increasing diversity and complexity of flux site instrumentation and organization, we have re-implemented the previously ignored or simplified procedures in data processing (e.g., frequency response correction, stationarity test), and added new methods for $CH_4$ flux gap-filling and $CO_2$ flux correction and partitioning. To evaluate the effects of the changes, we processed the data measured at a flat and homogeneous paddy field (i.e., HPK) and a deciduous forest in complex and heterogeneous topography (i.e., GDK), and quantified the differences. Based on the results from our overall assessment, it is confirmed that (1) the frequency response correction (HPK: 11~18% of biases for annually integrated values, GDK: 6~10%) and the stationarity test (HPK: 4~19% of biases for annually integrated values, GDK: 9~23%) are important for quality control and (2) the minimization of the missing data and the choice of the appropriate driver (rather than the choice of the gap-filling method) are important to reduce the uncertainty in gap-filled fluxes. These results suggest the future directions for the data processing technology development to ensure the continuity of the long-term KoFlux database.

Influence of Greenhouse Gases on Radiative Forcing at Urban Center and Background Sites on Jeju Island Using the Atmospheric Radiative Transfer Model (대기복사전달모델을 이용한 제주지역 도심 및 배경지점에서의 온실가스에 따른 복사강제력 영향 연구)

  • Lee, Soo-Jeong;Song, Sang-Keun;Han, Seung-Beom
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.423-433
    • /
    • 2017
  • The spatial and temporal variations in radiative forcing (RF) and mean temperature changes of greenhouse gases (GHGs), such as $CO_2$, $CH_4$, and $N_2O$, were analyzed at urban center (Yeon-dong) and background sites (Gosan) on Jeju Island during 2010~2015, based on a modeling approach (i.e., radiative transfer model). Overall, the RFs and mean temperature changes of $CO_2$ at Yeon-dong during most years (except for 2014) were estimated to be higher than those at Gosan. This might be possibly because of its higher concentrations at Yeon-dong due to relatively large energy consumption and small photosynthesis and also the difference in radiation flux due to the different input condition (e.g., local time and geographic coordinates of solar zenith angle) in the model. The annual mean RFs and temperature changes of $CO_2$ were highest in 2015 ($2.41Wm^{-2}$ and 1.76 K) at Yeon-dong and in 2013 ($2.22Wm^{-2}$ and 1.62 K) at Gosan (except for 2010 and 2011). The maximum monthly/seasonal mean RFs and temperature changes of $CO_2$ occurred in spring (Mar. and/or Apr.) or winter (Jan. and/or Feb.) at the two sites during the study period, whereas the minimum RFs and temperature changes in summer (Jun.-Aug.). In the case of $CH_4$ and $N_2O$, their impacts on the RF and mean temperature changes were very small (an order of magnitude lower) compared to $CO_2$. The spatio-temporal differences in these RF values of GHGs might primarily depend on the atmospheric profile (e.g., ozone profile), surface albedo, local time (or solar zenith angle), as well as their mass concentrations.

Comparison of CH4 Emission between Auto Chamber and Manual Chamber in the Rice Paddy (벼논에서 자동 챔버와 수동 챔버를 이용한 CH4 배출량 비교)

  • Jeong, Hyun Cheol;Choi, Eun Jung;Lee, Jong Sik;Kim, Gun Yeob;Lee, Sun Il
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.377-384
    • /
    • 2018
  • The chamber method is widely used for measuring methane emission from paddy rice fields. The closed static chamber has advantages of easy installation and removal in the field and low manufacturing cost. However, the manual chamber method requires a lot of labor and has a limited sampling time and frequency. To overcome the disadvantages of the manual chamber, the auto-chamber system is used for measuring methane emission. We compared the differences in methane flux between the auto-chamber and manual chamber. To investigate methane emissions by the two methods, a chamber was installed for each of the following treatments : control without rice straw (NA), spring plowing after autumn rice straw application (SPRA) and autumn plowing after autumn rice straw application (APRA). The total methane emission was lowest in the control and highest in APRA with both methods. There was no significant difference in total methane emission between the methods, but dynamic fluctuation in methane with temperature change was accurately measured in the auto-chamber. Measuring methane emission with an auto-chamber system is expected to reduce uncertainty and increase accuracy, accompanied by labor reduction.

Methane emission from municipal solid waste dumpsites: A case study of Chennai city in India

  • Srinivasan, Pavithrapriya;Andimuthu, Ramachandran;S.N., Ahamed Ibrahim;Ramachandran, Prasannavenkatesh;Rajkumar, Easwari;Kandasamy, Palanivelu
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • The indiscriminate growth in global population poses a threat to the world in handling and disposal of Municipal solid waste. Rapid urban growth increases the production, consumption and generation of Municipal solid waste which leads to a drastic change in the environment. The methane produced from the Municipal Solid waste accounts for up to 11% global anthropogenic emissions, which is a major cause for global warming. This study reports the methane emission estimation using IPCC default, TNO, LandGEM, EPER and close flux chamber from open dump yards at Perungudi and Kodungaiyur in Chennai, India. The result reveals that the methane emission using close flux chamber was in the range of 8.8 Gg/yr-11.3 Gg/yr and 6.1Gg/yr to 9.1 Gg/yr at Kodungaiyur and Perungudi dump yard respectively. The per capita waste generation was estimated based on waste generation and population. The waste generation potential was projected using linear regression model for the period 2017-2050. The trend of CH4 emission in the actual field measurement were increased every year, similarly the emission trend also increased in IPCC default method (mass balance approach), EPER Germany (zero order decay model) where as TNO and Land GEM (first order decay model) were decreased. The present study reveals that Kodungaiyur dump yard is more vulnerable to methane emission compared to Perungudi dump yard and has more potential in waste to energy conversion mechanisms than compare to Perungudi dump yard.

High density plasma etching of novel dielectric thin films: $Ta_{2}O_{5}$ and $(Ba,Sr)TiO_{3}$

  • Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.231-237
    • /
    • 2001
  • Etch rates up to 120 nm/min for $Ta_{2}O_{5}$ were achieved in both $SF_{6}/Ar$ and $Cl_{2}/Ar$ discharges. The effect of ultraviolet (UV) light illumination during ICP etching on $Ta_{2}O_{5}$ etch rate in those plasma chemistries was examined and UV illumination was found to produce significant enhancements in $Ta_{2}O_{5}$ etch rates most likely due to photoassisted desorption of the etch products. The effects of ion flux, ion energy, and plasma composition on (Ba, Sr)$TiO_3$ etch rate were examined and maximum etch rate ~90 nm/min was achieved in $Cl_{2}/Ar$ ICP discharges while $CH_{4}/H_{2}/Ar$ chemistry produced extremely low etch rates (${\leq}10\;nm/min$) under all conditions.

  • PDF

미기상학적 기법을 이용한 난지도 매립지에서의 수은, $CH_4$, VOC, $H_2S$, 및 $NH_3$의 Flux 측정

  • 김민영;신재영;김기현;이강웅;정일현
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.160-161
    • /
    • 2000
  • 난지도 육상폐기물매립지는 서울의 한강 하류부인 마포구 상암동에 위치하며 1매립지와 2매립지가 인접하여 1993년 3월부터 1997년 12월까지 15년간 이용되었으며 비분리방식에 의한 일반쓰레기는 물론이고 하수슬러지 및 산업폐기물 둥도 일부 매립되어 있는 매립지면적 2,715,000$m^2$, 매립면적 1,904,000$m^2$, 매립량 91,972,000$m^2$, 매립높이 95m로 세계최대의 비위생적 쓰레기 매립지 중의 하나로 매립중지 후 현재 8년이 경과하고 있다. (중략)

  • PDF

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF

Analysis of Flow Character and Gas Measurement from Final Cover Soil of sanitary Landfill (쓰레기 매립지 최종 복토층에서 가스 측정방법과 유출특성 해석)

  • 이해승
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1998
  • This paper is going to show the way we can sample the landfill gases flowing out to the air through final cover soil by using an closed chamber in the field for a short time. In addition, we came to the following results through the application of model with actual measurements. 1) Analyzing changes of concentration in the chamber(H: 10-30cm) every 5 minutes, considering analysis time of gas chromatograph for an half hour. 2) The proportion of $CE_4$to $CO_2$changes rapidly near the surface of final cover soil by the influence of methane oxidation reaction. 3) When flux of landfill gas is F=$10^{-5}$mol/$\textrm{m}^2$.s), methane oxidation reaction has an influence on composition of gases, however there is little influence when F=$10^{-6}$ mol/($\textrm{m}^2$.s).

  • PDF

Closed Static Chamber Methods for Measurement of Methane Fluxes from a Rice Paddy: A Review (벼논 메탄 플럭스 측정용 폐쇄형 정적 챔버법: 고찰)

  • Ju, Okjung;Kang, Namgoo;Lim, Gapjune
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.79-91
    • /
    • 2020
  • Accurate assessment of greenhouse gas emissions is a cornerstone of every climate change response study, and reliable assessment of greenhouse gas emission data is being used as a practical basis for the entire climate change prediction and modeling studies. Essential, fundamental technologies for estimating greenhouse gas emissions include an on-site monitoring technology, an evaluation methodology of uncertainty in emission factors, and a verification technology for reductions. The closed chamber method is being commonly used to measure gas fluxes between soil-vegetation and atmosphere. This method has the advantages of being simple, easily available and economical. This study presented the technical bases of the closed chamber method for measuring methane fluxes from a rice paddy. The methane fluxes from rice paddies occupy the largest portion of a single source of greenhouse gas in the agricultural field. We reviewed the international and the domestic studies on automated chamber monitoring systems that have been developed from manually operated chambers. Based on this review, we discussed scientific concerns on chamber methods with a particular focus on quality control for improving measurement reliability of field data.