• 제목/요약/키워드: $C^*$-integral

검색결과 663건 처리시간 0.029초

C-DUNFORD AND C-PETTIS INTEGRALS

  • Yu, Chao;Zhao, Dafang;Ye, Guoju
    • 충청수학회지
    • /
    • 제21권4호
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, we give some extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We also discuss the relation among the C-Dunford integral, C-Pettis integral and C-integral.

  • PDF

C-DUNFORD INTEGRAL AND C-PETTIS INTEGRAL

  • Zhao, Dafang;You, Xuexiao
    • 충청수학회지
    • /
    • 제21권1호
    • /
    • pp.21-28
    • /
    • 2008
  • In this paper, we give the Riemann-type extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We prove that a function f is C-Dunford integrable if and only if $x^*f$ is C-integrable for each $x^*{\in}X^*$ and prove the controlled convergence theorem for the C-Pettis integral.

  • PDF

ON C-INTEGRAL OF BANACH-VALUED FUNCTIONS

  • Ye, Guoju;Zhao, Dafang
    • Korean Journal of Mathematics
    • /
    • 제14권2호
    • /
    • pp.169-183
    • /
    • 2006
  • In this paper, we define and study the C-integral and the strong C-integral of functions mapping an interval [a,b] into a Banach space X. We prove that the C-integral and the strong C-integral are equivalent if and only if the Banach space is finite dimensional, We also consider the property of primitives corresponding to Banach-valued functions with respect to the C-integral and the strong C-integral.

  • PDF

ON STRONG C-INTEGRAL OF BANACH-VALUED FUNCTIONS

  • Zhao, Dafang;Ye, Guoju
    • 충청수학회지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we define and study the Banach-valued C-integral and strong C-integral, We prove that the C-integral and the strong C-integral are equivalent if and only if the Banach space is finite dimensional. We also study the primitive of the strong C-integral in terms of the C-variational measures.

  • PDF

복합응력이 작용하는 균열 배관에 대한 천이 크리프 조건에서의 C(t)-적분 예측 (I) - 탄성-크리프 - (Estimations of the C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (I) - Elastic-Creep -)

  • 송태광;김윤재
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.949-956
    • /
    • 2009
  • The C(t)-integral describes amplitude of stress and strain rate field near a tip of stationary crack under transient creep condition. Thus the C(t)-integral is a key parameter for the high-temperature crack assessment. Estimation formulae for C(t)-integral of the cracked component operating under mechanical load alone have been provided for decades. However, high temperature structures usually work under combined mechanical and thermal load. And no investigation has provided quantitative estimates for the C(t)-integral under combined mechanical and thermal load. In this study, 3-dimensional finite element analyses were conducted to calculate the C(t)-integral of elastic-creep material under combined mechanical and thermal load. As a result, redistribution time for the crack under combined mechanical and thermal load is re-defined through FE analyses to quantify the C(t)-integral. Estimates of C(t)-integral using this proposed redistribution time agree well with FE analyses results.

ON C-STIELTJES INTEGRAL OF BANACH-VALVED FUNCTIONS

  • Zhang, Xiaojie;Zhao, Dafang;Ye, Guoju
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권2호
    • /
    • pp.71-84
    • /
    • 2007
  • In this paper, we define the C-Stieltjes integral of the functions mapping an interval [a,b] into a Banach space X with respect to g on [a,b], and the C-Stieltjes representable operators for the vector-valued functions which are the generalizations of the Henstock-Stieltjes representable operators. Some properties of the C-Stieltjes operators and the convergence theorems of the C-Stieltjes integral are given.

  • PDF

A NOTE ON THE INTEGRATION WITH RESPECT TO FINITELY ADDITIVE SET FUNCTIONS

  • Kim, Bong-Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제6권1호
    • /
    • pp.17-25
    • /
    • 1999
  • In this paper, we investigate the properties of the Dunford-Schwartz integral (the integral with respect to a finitely additive measure). Though it is not equivalent to the cylinder integral, we can show that a cylinder probability v on (H, C) can be extend as a finitely additive probability measure $\hat{v}$ on a field $\hat{C}{\;}{\supset}{\;}C$ which is equivalent to the Dunford-Schwartz integral on ($H,{\;}\hat{C},{\;}\hat{v}$).

  • PDF

AiC 관점에 따른 부정적분과 정적분 관계 학습사례 연구 (A Case Study on the Relationship between Indefinite Integral and Definite Integral according to the AiC Perspective)

  • 박민규;이경화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제36권1호
    • /
    • pp.39-57
    • /
    • 2022
  • 본 연구는 맥락에서 출발하여 추상화로 나아가는 방식으로 수학 학습을 설명하는 AiC(Abstraction in Context) 이론에 따른 수업이 부정적분과 정적분의 관계에 대한 이해를 촉진하는 지를 파악하는 데 목표를 둔다. 이를 위해 과학고등학교 2학년 학생 8명을 대상으로 설계한 적분 지도 방안에 따라 수업을 실시했으며, 전 수업 과정을 녹화, 녹음한 자료와 활동지 등의 자료를 수집하고 분석하였다. 분석 결과, 연구에 참여한 학생들은 누적 개념이 내재된 맥락에서 출발하여 동료 학생들과 상호 소통하면서 부정적분과 정적분의 관계에 연결되는 세 가지 지식 요소인 '누적함수의 순간 변화율', '부정적분을 이용한 정적분의 계산', '누적함수를 이용한 부정적분의 결정'을 구성하였다. 연구결과를 바탕으로, AiC 관점은 부정적분과 정적분 관계의 학습을 지원하는 잠재력을 가지고 있으며, 이를 다른 학습영역으로 확장하여 고등학교 수학수업을 개선하는 데에도 활용할 수 있음을 논의하였다.

일반 크리프 거동을 고려한 균열 구조물 C*-적분 예측 (Estimation of C*-Integral for Defective Components with General Creep-Deformation Behaviors)

  • 김영진;김진수;김윤재
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.795-802
    • /
    • 2002
  • For assessing significance of a defect in a component operating at high (creeping) temperatures, accurate estimation of fracture mechanics parameter, $C^{*}$-integral, is essential. Although the J estimation equation in the GE/EPRl handbook can be used to estimate the $C^{*}$-integral when the creep -deformation behavior can be characterized by the power law creep, such power law creep behavior is a very poor approximation for typical creep behaviors of most materials. Accordingly there can be a significant error in the $C^{*}$-integral. To overcome problems associated with GE/EPRl approach, the reference stress approach has been proposed, but the results can be sometimes unduly conservative. In this paper, a new method to estimate the $C^{*}$-integral for deflective components is proposed. This method improves the accuracy of the reference stress approach significantly. The proposed calculations are then validated against elastic -creep finite element (FE) analyses for four different cracked geometries following various creep -deformation constitutive laws. Comparison of the FE $C^{*}$-integral values with those calculated from the proposed method shows good agreements.greements.