• Title/Summary/Keyword: $BiI_3$

Search Result 405, Processing Time 0.027 seconds

A closer look at the structure and gamma-ray shielding properties of newly designed boro -tellurite glasses reinforced by bismuth (III) oxide

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;N.N. Yusof;M.I. Sayyed;K.G. Mahmoud;I. Abdullahi;S. Hashim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1734-1741
    • /
    • 2023
  • This work presents the synthesis and preparation of a new glass system described by the equation of (70-x) B2O3-5TeO2 -20SrCO3-5ZnO -xBi2O3, x = 0, 1, 5, 10, and 15 mol. %, using the melt quenching technique at a melting temperature of 1100 ℃. The photon-shielding characteristics mainly the linear attenuation coefficient (LAC) of the prepared glass samples were evaluated using Monte Carlo (MC) simulation N-particle transport code (MCNP-5) at gamma-ray energy extended from 59 keV to 1408 keV emitted by the radioisotopes Am-241, Ba-133, Cs-137, Co-60, Na-22, and Eu-152. Furthermore, we observed that the Bi2O3 content of the glasses had a significantly stronger impact on the LAC at 59 and 356 keV. The study of the lead equivalent thickness shows that the performance of fabricated glass sample with 15 mol.% of Bi2O3 is four times less than the performance of pure lead at low gamma photon energy while it is enhanced and became two times lower the perforce of pure lead at high energy. Therefore, the fabricated glasses special sample with 15 mol.% of Bi2O3 has good shielding properties in low, intermediate, and high energy intervals.

Fabrication of 250 m class Bi-2223/Ag HTS Tapes (250 m 급 Bi-2223/Ag 고온 초전도선재 제조)

  • Ha, H.S.;Oh, S.S.;Ha, D.W.;Jang, H.M.;Kim, S.C.;Song, K.J.;Park, C.;Kwon, Y.K.;Ryu, K.S.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.130-133
    • /
    • 2001
  • A multifilamentary Bi-2223 HTS tape for superconducting power applications was studied through the fabrication of 250-meter long tapes by the PIT(powder in tube) process. To fabricate continuous long wire, a drawing machine, a two-drum bull block and a rolled tape winding machine were developed. Especially, 250-meter long tapes were heat treated in the shape of pancake coil to reduce the heat affect zone and to achieve the high critical current. Engineering critical current density was improved through both the enhancements of critical current density by control of thermal process and the increase of filling factor by using thin Ag alloy sheath tubes less than 1.5 mm in thickness. We have made successfully 250-meter long 37 filamentary tapes with high filling factor up to 31 % employing the modified drawing and rolling technique. The critical current of 250-meter long tapes with pancake coil type was measured by transport method at self-field up to 250 gauss of center field. The measured values, based on the transport critical current at self-field, $I_{c}$ -B characteristics and magnetic field analysis, are 34 A of I$_{c}$ and 4.0 $kA/\textrm{cm}^2$ of $J_{e}$ at 250 m, 77 K, and 0 T. We also have achieved the 56 A of I$_{c}$ and 7.0 $0 kA/\textrm{cm}^2$ of$ J_{e}$ in short tapes at 77K, self-field, and 1$mutextrm{V}$/cm.

  • PDF

Miniaturization of Circularly Polarized Microstrip Antenna for RFID Portable Reader at 900 MHz Band (900 MHz대 RFID 휴대 리더용 원편파 안테나 소형화)

  • Kang, Min-Sik;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.411-417
    • /
    • 2008
  • This paper presents the miniaturization of circularly polarized microstrip patch antenna for UHF-band RFID portable reader. The proposed antenna has a group of four I-slots on a conventional corner-truncated square microstrip patch and it is shown that the antenna size is reduced compared to the antenna without I-slots. A 76 mm by 76 mm small antenna with four I-slots is fabricated with 6.4 mm thick FR4 substrate and its 10 dB return loss bandwidth, the gain and the axial ratio are measured to be $938{\sim}975\;MHz$, $-0.88{\sim}-2\;dBi$, and $3.27{\sim}13.21\;dB$ within the 10 dB return loss bandwidth, respectively.

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

Analysis of Grain Boundary Phenomena in ZnO Varistor Using Dielectric Functions (유전함수를 이용한 ZnO 바리스터의 입계 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.178-178
    • /
    • 2008
  • ZnO 바리스터는 인가되는 전압에 따라 저항이 변하는 전압 의존형 저항체이며 각종 전기 전자 정보통신용 제품에 정전기(ESD) 대책용 소자로 폭 넓게 사용되는 전자 세라믹스 부품이다. 특별히 Bi-based ZnO 바리스터는 다양한 상(phase)으로 구성되어 있으며 그 입계의 전기적 특성은 소량 첨가되는 dopant의 종류에 따라 다양하게 변하는 것으로 알려져 있다. 본 연구에서는 Bi-based ZnO 바리스터 (ZnO-$Bi_2O_3$, ZnO-$Bi_2O_3-Mn_3O_4$)에서 각종 유전함수$(Z^*,M^*,\varepsilon^*,Y^*,tan{\delta})$를 이용하여 입계의 주파수-온도에 대한 특성을 살펴 보았다. 일반적인 ZnO 바리스터 제조법으로 시편을 제작하여 78K~800K 온도 범위에서 각종 유전함수를 이용하여 복소 평면도(complex plane plot)와 주파수 응답도(frequency explicit plot)의 방법으로 defect level과 입계 특성(활성화 에너지, 정전용량, 저항, 입계 안정성 등)에 대하여 고찰하였다. ZnO-$Bi_2O_3$(ZB)계와 ZnO-$Bi_2O_3-Mn_3O_4$(ZBM)계 모두 상온 이하의 온도에서 $Zn_i$$V_o$의 결함이 나타났으며, 이들의 결함 준위는 각 유전함수에 따라 다소 차이가 났다. 입계 특성으로 ZB계는 이상구간(560~660K)을 전후로 1.15 eV $\rightarrow$ 1.49 eV의 활성화 에너지의 변화가 나타났지만, ZBM계는 이러한 현상이 나타나지 않았다. 또한 입계 전위 장벽의 온도 안정성에 대해서는 Cole-Cole model을 적용하여 분포 파라미터 (distribution parameter; $\alpha$)를 구하여 고찰하였다. ZB계의 입계 안정성은 온도에 따라 불안정해 졌지만, ZBM계는 안정하였다.

  • PDF

Improvement of Critical Current In Bi-2223/Ag HTS Tapes by the Bubbling Control

  • 하홍수;오상수;하동우;이남진;김상철
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.247-251
    • /
    • 2002
  • In general, the bubbling, generated during the fabrication of the tapes, breaks the superconducting filament, and critical current of the tapes will be decreased. Heat-treatment schemes of Bi-2223/Ag HTS tapes were modified, such as pre-annealing of multi-stacked billet, 2-step main sintering and ramp rate etc. The generation of bubbling was drastically decreased from 20 bubbles/m to 0 ~ 1 bubble/m by the modified heat-treatment. Therefore, the value of critical current of the tapes without bubbling was increased almost twice higher than that of already existing tapes. Critical current up to 42 A in 40 m length Bi-22231Ag tapes have been measured at 77K, self-field, 1$mutextrm{V}$/cm criterion. It could be confirmed that elimination of bubbling is effective to maintain the superconducting property along the tape length.

  • PDF

Analysis on Current Distribution in Bi-2223/Ag Tapes with Applied Alternating Over-critical Current

  • Yim, Seong-Woo;Kim, Hye-Rim;Hwang, Si-Dole
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.678-682
    • /
    • 2004
  • Generally Bi-2223/Ag tapes have a broad S/N transition region and their sheath is a good electric conductor. In this study, the current distribution between superconductor and metal sheath in HTS tapes were investigated. AC with its peak value above 10 times $I_{c}$ was applied to HTS tapes for around 6 cycles and V-I characteristics were measured. Using the resistance of the sheath and V-I curves, the current distribution between superconductor and metal sheath was calculated. When 150 $A_{p}$ was applied, more than 2/3 of the current flows through superconductor. However, in the case of 304 $A_{p}$, most of the applied current came to flow through the metal sheath at the 6th cycle.e.e.e.

The First Organobismuth Compound with Differently Substituted, ${\pi}$-bonded Cyclopentadienylring, ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$ (서로 다른 씨클로펜타디엔 유도체가 결합된 최초의 비스무스 화합물, ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$의 합성과 결정구조)

  • Shin, Sung-Hee;Hwang, Kyo-Hyun;Chun, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.87-91
    • /
    • 1997
  • 서로 다른 씨클로펜타디엔 유도체가 ${\pi}$-결합된 최초의 비스무스 화합물인 ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$이 디펜타메틸씨클로펜타디에닐 비스무스디메틸아미드 $Cp{\ast}_2BiNMe_2[Cp{\ast}=C_5(CH_3)_5]$와 씨클로펜타디에닐 모노머와의 반응으로 합성되었다. 반응조건은 에테르 용매하에 -78$^{\circ}C$ 반응온도 조건하에서 얻어졌다. 합성된 반응물을 노르말 헥산 용매에서 재결정시킨 결과, 검은색 결정이 60% 수율로 얻어졌다. 그리고 재결정시킨 반응물을 190K에서 X-선 단결정 구조 분석 방법에 의해 그 구조를 밝혔다. 그 결과 결정계의 격자계는 I2/a, a=1756.00 picometer, b=906.00 picometer, c=2211.00 picometer, ${\beta}$=104.04, Z=8로 확인되었다. 여기서 a, b, c는 결정�Ю� 상수이고, ${\beta}$는 결정격자 상수인 b와 c간의 각도이며, Z는 단위 결정 격자당 분자의 갯수이다.

An Integrated Si BiCMOS RF Transceiver for 900 MHz GSM Digital Handset Application (I) : RF Receiver Section (900MHz GSM 디지털 단말기용 Si BiCMOS RF송수신 IC개발 (I) : RF수신단)

  • Park, In-Shig;Lee, Kyu-Bok;Kim, Jong-Kyu;Kim, Han-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.9-18
    • /
    • 1998
  • A single RF transceiver chip for an extended GSM handset application was designedm, fabricated and evaluated. A RFIC was fabricated by using silicon BiCMOS process, and then packaged in 80 pin TQFP of $10 {\times} 10 mm^{2}$ in size. As a result, it was achieved guite reasonable integraty and good RF performance at the operation voltage of 3.3V. This paper describes development results of RF receiver section of the RFIC, which includes LNA, down conversion mixer, AGC, switched capacitor filter and down sampling mixer. The test results show that RF receiver section is well operated within frequency range of 925 ~960 MHz, which is defined on the extended GSM specification (E-GSM). The receiver section also reveals moderate power consumption of 67 mA and minimum detectable signal of -105 dBm.

  • PDF