• Title/Summary/Keyword: $BaTiO_{3}$

Search Result 1,478, Processing Time 0.032 seconds

Processing, structure, and properties of lead-free piezoelectric NBT-BT

  • Mhin, Sungwook;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.160-165
    • /
    • 2015
  • Lead-free piezoelectric materials have been actively studied to substitute for conventional PZT based solid solution, $Pb(Zr_xTi_{1-x}O_3)$, which occurs unavoidable PbO during the sintering process. Among them, Bismuth Sodium Titanate, $Na_{0.5}Bi_{0.5}TiO_3$ (abbreviated as NBT) based solid solution is attracted for the one of excellent candidates which shows the strong ferroelectricity, Curie temperature (Tc), remnant polarization (Pr) and coercive field (Ec). Especially, the solid solution of rhombohedral phase NBT with tetragonal perovskite phase has a rhombohedral - tetragonal morphotropic phase boundary. Modified NBT with tetragonal perovskite at the region of MPB can be applied for high frequency ultrasonic application because of not only its low permittivity, high electrocoupling factor and high mechanical strength, but also effective piezoelectric activity by poling. In this study, solid state ceramic processing of NBT and modified NBT, $(Na_{0.5}Bi_{0.5})_{0.93}Ba_{0.7}TiO_3$ (abbreviated as NBT-7BT), at the region of MPB using 7 % $BaTiO_3$ as a tetragonal perovskite was introduced and the structure between NBT and NBT-7BT were analyzed using rietveld refinement. Also, the ferroelectric and piezoelectric properties of NBT-7BT such as permittivity, piezoelectric constant, polarization hysteresis and strain hysteresis loop were compared with those of pure NBT.

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo;Bian, Jin-Long;Seo, Yong-Jun;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.216-219
    • /
    • 2011
  • Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.

A study on development of CRM by means of XRF analysis for fine ceramic ($BaTiO_3$) (티탄산바륨 소재의 XRF 분석용 CRM 개발에 관한 연구)

  • Kim, Young Man;Jeong, Chan Yee;Lim, Chang Ho;Song, Taek Yong;Lee, Dong Soo
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.382-391
    • /
    • 1996
  • In this study, 12 different chemical species of fine ceramic($BaTiO_3$) were synthesized as the standard materials for the fast and accurate measurements of X-ray fluorescence spectrometry. Samples were diluted to sixteen times with the filling compound ($Li_2B_4O_7+LiBO_2$) in order to remove the matrix effect, and to get the convenient storage and homogeneity of ingredients. The matrix effects among the ingredients were corrected by the empirical coefficient method based on the Lucas-Tooth and Price model. The standard curve on 12 standard materials containing 15 elements were obtained by using X-ray fluorescence spectrometry at three different laboratories. The correlation factors of BaO, PbO, SrO, $Fe_2O_3$, $La_2O_3$, $SnO_2$, ZnO, $ZrO_2$, CaO indicated the relati vely good agreement over 0.995 among the three different laboratories. $SiO_2$ and $Al_2O_3$ showed the poor linearity because of their low fluorescence intensities.

  • PDF

Study on the Fabrication of Embedded Capacitor Films for PWB substrate (PWB 기판용 Embedded Capacitor필름 제작에 관한 연구)

  • 이주연;조성동;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.21-27
    • /
    • 2001
  • Epoxy/BaTiO$_3$composite film type capacitors with excellent stability at room temperature, uniform thickness, and electrical properties over a large area were successfully fabricated. We fabricated composite capacitor films with good film formation capability and easy process ability, from ACF-resin as a matrix and two kinds of BaTiO$_3$powders as fillers to increase the dielectric constant of the composite film. The crystal structure of the powders and its effects on dielectric constant of the films were investigated by X-ray diffraction. DSC and dielectric properties tests were conducted to decide the right curing temperature and the optimum amount of the curing agent. As a result, the capacitors of $7{\mu}{\textrm}{m}$ thick film with 10nF/cm2 and low leakage current were successfully demonstrated.

  • PDF

Functional Pyrogenic Boots for Proving by Self-Controlled Fixed-temperature Heat-generation Property of Semiconduction Ceramic PTC Termistor (세라믹 PTC 서미스터의 정온발열특성을 이용한 탐사기는 온열부츠)

  • So, Dae-Hwa;Im, Byeong-Jae
    • Proceedings of the Speleological Society Conference
    • /
    • 2005.11a
    • /
    • pp.69-77
    • /
    • 2005
  • 비 직선적 정(+) 저항온도계수 특성을 갖은 PTC thermistor눈 전이온도(큐리점) 부근에서 온도변화에 대하여 극히 큰 저항 값의 변화를 나타내는 산화물계반도체 저항기(또는 발열체)로써, 일반적으로 반도체의 온도-저항 특성과 같이 상온영역에서 온도의 상승과 함께 부성저항 특성을 나타내어 감소하다가, 온도가 점점 증가하여 큐리점 부근에 도달하면 저항이 급격히 증가하는 독특한 특성을 갖는다. Perovskite 구조의 BaTiO$_3$를 주성분으로 미량의 Dopant를 첨가하여 도전성을 갖게 한 N형 반도체의 일종으로, 저항-온도 특성, 전류-전압 특성, 전류감쇄 특성 등을 이용하여 과전류 보호회로, 히터, TV 소자회로(degausser) 모터기동회로, 온도센서, 정온발열기기 등으로 널리 사용된다. 본 연구는 큐리점 부근의 급격한 저항변화 현상과 결정입계의 전위장벽 형성 및 그에 따른 정온발열 기능의 상관성으로부터 정온발열 탐사기능 온열부츠 제작 용 PTC 부픔소재의 응용성을 조사하였다.

  • PDF

Dielectric Properties of Polymer-ceramic Composites for Embedded Capacitors

  • Yoon, Jung-Rag;Han, Jeong-Woo;Lee, Kyung-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.116-120
    • /
    • 2009
  • Ceramic-polymer composites have been investigated for their suitability as embedded capacitor materials because they combine the processing ability of polymers with the desired dielectric properties of ceramics. This paper discusses the dielectric properties of the ceramic ($BaTiO_3$)-polymer (Epoxy) composition as a function of ceramic particle size at a ceramic loading of 40 vol%. The dielectric constant of these ceramic-polymer composites increases as the powder size decreases. Results show that ceramic-polymer composites have a high dielectric constant associated with the $BaTiO_3$ powder with a 200 nm particle size, high insulation resistance, high breakdown voltage (> 22 KV/mm), and low dielectric loss (0.018-0.024) at 1 MHz.