• Title/Summary/Keyword: $B_4C$ coating

Search Result 117, Processing Time 0.03 seconds

Influence of Coating Agent and Particle Size on the Soft Magnetic Properties of Fe Based Nano Crystalline Alloy Powder Core (철기(Fe Based) 나노결정질 합금 분말코어의 코팅제 및 입도가 연자기적 특성에 미치는 영향)

  • Jang, S.J.;Choi, Y.J.;Kim, S.W.;Jeon, B.S.;Lee, T.H.;Song, C.B.;Namkung, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.67-73
    • /
    • 2015
  • This is a basic research for improving soft magnetic property of Fe based nano crystalline alloy powder core. The main study is done around characteristics of permeability, core loss, and DC bias depending on amount of insulation coating agent and particle size. First, $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy ribbon was fabricated by using the planar flow casting (PFC) device. Then, heat treatment and ball milling were done to obtain alloy powder. The amount of polyether imide (PEI) added to it was varied by 0.5, 1.0, 2.0, 2.5 wt% to have compression molding into $16ton/cm^2$. After going through crystalline heat treatment, the made toroidal nano crystalline powder core ($OD12.7mm^*ID7.62mm^*H4.75mm$) had smaller permeability as amount of insulation coating agent decreases. However, it was found out that core loss and DC bias characteristics have been improved. The reason for this results were expected to be because green density of power core decreases as amorphous alloy powder particles become smaller as amount of alloy powder insulation coating agent increases, it was determined that 1 wt% of insulation coating agent is appropriate. Also, for powder core made based on alloy powder size with amount of insulation coating agent fixed at 1 wt%, effective permeability and core loss were outstanding as particle size became bigger. However, characteristics of DC bias became worse as applied DC field increases. This is expected to be due to insulation effect, residual pores, or molding density of powder core resulting from thickness of coating on surface of alloy powder.

Synthesis and Characterization of PPC/Organo-Clay Nanohybrid: Influence of Organically Modified Layered Silicates on Thermal and Water Absorption Properties (PPC와 Organo-Clay 나노 조성물의 합성과 실리카층의 수분흡수와 열적특성에 대한 영향)

  • Han, Hak-Soo;Khan, Sher Bahadar;Seo, Jong-Chul;Jang, Eui-Sung;Choi, Joon-Suk;Choi, Seung-Hyuk
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.341-347
    • /
    • 2009
  • Nanohybrid based on environmentally friendly and biodegradable polymer, poly propylene carbonate (PPC) and cloisite 20B (PPC/C-20B) have been synthesized by solution blending method and their morphology, thermal and water absorption properties have been evaluated. The structure of PPC/C-20B nanohybrid was confirmed by X-ray diffraction (XRD). The thermal property of PPC and PPC/C-20B nanohybrid were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetric (DSC). The experimental results demonstrated that nanohybrid showed the highest thermal stability in TGA and DSC. TGA tests revealed that the thermal decomposition temperature ($T_{d50%}$) of the nanohybrid increased significantly, being $23^{\circ}C$ higher than that of pure PPC while DSC measurements indicated that the introduction of 5 mass% of clay increased the glass transition temperature from 21 to $30^{\circ}C$. Further the water absorption capacity of the PPC was significantly decreased by the incorporation of clay. Water absorption cause degradation of the coating by the moistures and affect the physical and mechanical performance. This result indicates that organic modifiers have effect on thermal and water absorption capacity of PPC and are of importance for the practical process and application of PPC.

Preparation of Photosensitizer-Coated Ferrofluids and Fabrication of a Device for Photodynamic Therapy (광감제가 코팅된 자성유체의 제조와 광역학 치료용 장치의 구성)

  • Gwon, Sun-Gwang;Kim, Jong-O;Kim, Jong-Hui
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.215-219
    • /
    • 2002
  • For the purpose of annihilating tumor in body, hematoporphyrin as a photosensitizer was coated onto magnetic particles of $Fe_3O_4$ prepared by coprecipitation which could be concentrated around the tumor by magnetic field. The photosensitizer was applied differently before, during and after adsorbing the 1st surfactant on the particles. Its added amount was $5{\times}10^{-4}/mol$, and the coating reaction proceeded at temperatures of 60, 70 and 8$0^{\circ}C$. The amounts of photosensitizer coated on the magnetic particles were obtained by calculating an optical density with the maximum UV spectrum. As a result of the UV analysis, the coating amount of photosensitizer increased with higher reaction temperatures. When applied at 8$0^{\circ}C$ after adsorbing the 1st surfactant, the photosensitizer was coated with a maximum value of $3.8{\times}10^{-3}/mo1/$\ell$$. The TGA analysis revealed that the ferrofluids included the particles of 30.115 g/$\ell$. It was suggested that the magnetite particles was coated with photosensitizer of $1.26{\times}10^{-4}/mo1/g$. A small-sized device for magnetic field and light emission was designed, in which LED sheets coverts the permanent magnet of Nd-Fe-B. The LED sheet was connected in series circuit and also protected with a silicon tube. The power was supplied with rechargable battery of 9V and 100-120mA.

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(II) (산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(II))

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.61-72
    • /
    • 2009
  • Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and $ClO_2$) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as $H_2O_2\;and\;O_3$. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.

An Experimental Study to Secure Electromagnetic Pulse Shielding Performance of Concrete Coated by an Arc Metal Spraying Process (아크 금속 용사 공법에 의해 코팅된 콘크리트의 전자기파 차폐 성능 확보를 위한 실험적 연구)

  • Jang, Jong-Min;Jeong, Hwa-Rang;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.519-527
    • /
    • 2021
  • In this study, an electromagnetic pulse shielding effect was obtained by applying the arc metal spraying method to the ordinary concrete. For this study, to evaluate the electrical properties in the thickness of the metal sprayed coating, 8 types of metals(Cu, CuAl, CuNi, CuZn, Al, Zn, ZnAl, AlMg) were sprayed as coatings with a thickness of 100, 200 and 500㎛. The electrical conductivity on the surface was measured with a 4-pin probe, and an electromagnetic wave shielding effect test was performed according to KS. Based on the test results, 200 ㎛ was proposed as an optimal metal coating thickness for electromagnetic pulse shielding, and it was thermally sprayed on a 300×300×100mm concrete specimen to analyze the electromagnetic wave shielding performance. However, in the area of adhesion strength, the maximum was 1.11MPa, which was found to be less than 74% of the target performance.

Carbon-based Materials for Atomic Energy Reactor

  • Sathiyamoorthy, D.;Sur, A.K.
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.36-39
    • /
    • 2003
  • Carbon and carbon-based materials are used in nuclear reactors and there has recently been growing interest to develop graphite and carbon based materials for high temperature nuclear and fusion reactors. Efforts are underway to develop high density carbon materials as well as amorphous isotropic carbon for the application in thermal reactors. There has been research on coated nuclear fuel for high temperature reactor and research and development on coated fuels are now focused on fuel particles with high endurance during normal lifetime of the reactor. Since graphite as a moderator as well as structural material in high temperature reactors is one of the most favored choices, it is now felt to develop high density isotropic graphite with suitable coating for safe application of carbon based materials even in oxidizing or water vapor environment. Carboncarbon composite materials compared to conventional graphite materials are now being looked into as the promising materials for the fusion reactor due their ability to have high thermal conductivity and high thermal shock resistance. This paper deals with the application of carbon materials on various nuclear reactors related issues and addresses the current need for focused research on novel carbon materials for future new generation nuclear reactors.

  • PDF

Improving Germination and Seedling Growth of Rigitaeda Pine Tree by Coating and Prime Treatment (리기테다 소나무 종자(種子)의 피복(被覆)과 전처리(前處理)에 의한 발아(發芽) 및 유묘(幼苗) 생장(生長) 촉진(促進))

  • Koh, D.S.;Hur, S.N.;Seo, B.S.
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.505-511
    • /
    • 1994
  • Seeds of Rigitaeda pine tree(Pinus rigida${\times}$P. taeda) was primed with polyethylene glycol(PEG-6000) under different PEG concentrations, treatment period, and temperatures to test uniformity of germination. Coated seeds and PEG treated seeds were sown to compare germination, emergence, establishment, and seedling growth. The results obtained are summarized as follows : 1. As the concentration of PEG increased, as total germination percentage of pine tree was increased. Total germination percentage of pine tree seeds primed with PEG at 15 or $20^{\circ}C$ was better than the seeds treated at $10^{\circ}C$ compared to untreated seeds. 2. Germination rate was improved as primed period long and level of PEG concentration high. 3. Maximum germination rate was high with long PEG treatment period, and markedly improved when the seeds were primed at $20^{\circ}C$ 4. Priming with PEG at $20^{\circ}C$ for 12 days reduced time taken for germination. 5. Osmoconditioned seeds accelerated germination under drought condition with injurious effect of coated seeds by some chemicals. 6. There were much differences in establishment and dry matter production between drill and oversowing method, and primed seeds showed better performances than the coated seeds. Coating effects to seeds were better under drought soil condition rather than moderate moisture condition.

  • PDF

Effect of Edible Coatings Containing Soy Protein Isolate (SPI) on the Browning and Moisture Content of Cut Fruit and Vegetables

  • Shon, Jin-Han;Choi, Yong-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.190-196
    • /
    • 2011
  • Effectiveness of edible coatings containing soy protein isolate (SPI), in reducing oxidative browning and moisture loss during storage ($4^{\circ}C$) of cut apples, potatoes, carrots, and onions was investigated. The SPI coatings were shown to have antioxidative activity. Furthermore, addition of carboxymethyl cellulose (CMC) to the formulations significantly improved its antioxidative activity. Oxidative discoloration, as determined by Commission Internationale De I'Eclairage (CIE) lightness ($L^*$), redness ($a^*$), and yellowness ($b^*$) color scale, was significantly reduced (p <0.05) by SPI coating treatments over a storage time of 120 min. Loss of lightness was reduced by SPI coatings with and without CMC. These respectively showed 4.03 and 3.71% change of $L^*$ value compared to 8.56% for control. Browning of the control in cut potatoes was significantly increased by 106.6% in contrast to 34.3 and 35.2% for SPI coatings with and without CMC, respectively. The $b^*$ values also reflected effectiveness of SPI. Moisture barrier effect was significantly better for the treatments, compared to the control. SPI coatings reduced moisture loss in apples and potatoes, respectively, by 21.3 and 29.6% over the control. Cut onions did not show any treatment effect both in terms of browning and moisture loss. SPI coatings prove to be good moisture barrier and antioxidative property.

Characterizations of Ti-Al-V-N Films Deposited by DC and RF Reactive Magnetron Sputtering (직류 및 고주파 마그네트론 스퍼터링법으로 증착한 Ti-Al-V-N 박막의 특성)

  • Sohn, Yong-Un;Chung, In-Wha;Lee, Young-Ki
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.398-404
    • /
    • 2000
  • The Ti-Al-V-N films have been deposited on various substrates by d.c and r.f reactive magnetron sputtering from a Ti-6Al-4V alloy target in mixed $Ar-N_2$ discharges. The films were investigated by means of XRD, AES, SEM/EDX, microhardness, TG and scratch test. The XRD and SEM results indicated that the films were of single B1 NaCl phase having dense columnar structure with the (111) preferred orientation. The composition of Ti-Al-V-N film was the Ti-7.1Al-4.3V-N(wt%) films. Adhesion and microhardness of Ti-Al-V-N films deposited by r.f magnetron sputtering method were better than those deposited by d.c magnetron sputtering method. The anti-oxidation properties of Ti-Al-V-N films were also superior to that of Ti-N film deposited by the same deposition conditions.

  • PDF

Planarization of SUS310 Metal Substrate Used for Coated Conductor Substrate by Chemical Solution Coating Method (화학적인 용액 코팅방법에 의한 박막형 고온초전도체에 사용되는 SUS310 금속모재의 평탄화 연구)

  • Lee, J.B.;Lee, H.J.;Kim, B.J.;Kwon, B.K.;Kim, S.J.;Lee, J.S.;Lee, C.Y.;Moon, S.H.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • The properties of $2^{nd}$ generation high temperature superconducting wire, coated conductor strongly depend on the quality of superconducting oxide layer and property of metal substrate is one of the most important factors affecting the quality of coated conductor. Good mechanical and chemical stability at high temperature are required to maintain the initial integrity during the various process steps required to deposit several layers consisting coated conductor. And substrate need to be nonmagnetic to reduce magnetization loss for ac application. Hastelloy and stainless steel are the most suitable alloys for metal substrate. One of the obstacles in using stainless steel as substrate for coated conductor is its difficulties in making smooth surface inevitable for depositing good IBAD layer. Conventional method involves several steps such as electro polishing, deposition of $Al_2O_3$ and $Y_2O_3$ before IBAD process. Chemical solution deposition method can simplify those steps into one step process having uniformity in large area. In this research, we tried to improve the surface roughness of stainless steel(SUS310). The precursor coating solution was synthesized by using yttrium complex. The viscosity of coating solution and heat treatment condition were optimized for smooth surface. A smooth amorphous $Y_2O_3$ thin film suitable for IBAD process was coated on SUS310 tape. The surface roughness was improved from 40nm to 1.8 nm by 4 coatings. The IBAD-MgO layer deposited on prepared substrate showed good in plane alignment(${\Delta}{\phi}$) of $6.2^{\circ}$.