• Title/Summary/Keyword: $BKNO_3$

Search Result 10, Processing Time 0.017 seconds

Arrhenius Kinetic Constants Analysis of BKNO3 under Accelerated Aging (가속노화에 따른 BKNO3의 아레니우스 동역학 상수 분석)

  • Jang, Seung-gyo;Kim, Jun-hyung;Ryu, Byung-tae;Hwang, Jung-min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.34-39
    • /
    • 2016
  • Arrhenius kinetic constants, the activation energy and the pre-exponential factor, of energetic material $BKNO_3$ are estimated using Differential Scanning Calorimetry (DSC). Different from the conventional way, the activation energy was estimated more precisely through DSC aging trial, and the consumed fraction by heat was calculated by comparing the integration of heat flow. We suggested the condition of accelerated aging test for the energetic material $BKNO_3$ and reconsidered the meaning of the thermal accelerated aging.

The Manufacturing Process and Characteristic Analysis of BKNO3 Metal-Explosive for PMD (PMD용 BKNO3 금속화약의 제조공정 및 특성분석)

  • Shim, Jungseob;Kim, Sangbaek;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • This study investigated the manufacturing process and characteristics of $BKNO_3$ (Boron Potassium Nitrate) as a pyrotechnic propellant that is commonly used in the aerospace, defense, and automobile industries. The solid mixture was composed of oxidizing agent, fuel, and binder. Evaporation process was used to uniformly mix the raw materials. The optimal ratio of composition was designed through the CEA program analysis of the material characteristics and thermal responses. Further the size, shape, sensitivity, and calorimetry characteristics were studied.

Combustion Modeling of Explosive for Pyrotechnic Initiator (파이로테크닉 착화기 화약 연소 모델링)

  • Cha, Seung-Won;Woo, Jeongmin;Kim, Yong-chan;Oh, Seok-Hwan;Cho, Jin Yeon;Kim, Jeong Ho;Jang, Seung-gyo;Yang, Hee Won;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.39-48
    • /
    • 2017
  • In this study, combustion modeling of ZPP and $BKNO_3$ mainly used in the PMD industries has been performed. Saint Robert's law, energy conservation equation, and the Noble-Abel equation of the state have been used for governing equations. The results of pressure obtained from established combustion models and actual CBT have been compared. In the case of ZPP, the model has predicted a pressure curve similar to that of the experimental results, but $BKNO_3$ has showed that the maximum pressure of the model is greater than the experiment at small chamber volume. For these gaps, the probability of $BKNO_3$ unburning has been considered.

The Characteristics Analysis and Manufacture of Explosive BKNO3 on PMD (PMD용 화약 BKNO3 제조 및 특성분석)

  • Shim, Jungseob;Kim, Sangbaek;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.433-439
    • /
    • 2017
  • This research investigates the manufacturing process and characteristics analysis of $BKNO_3$ (Boron Potassium Nitrate) as pyrotechnic are commonly found in the aerospace, defense, and automotive industries. A solid pyrotechnic mixture is composed of an oxidizing agent, fuel, and binder. Precipitation process was used to uniformly mix the raw material. Through the analysis of the material characteristics and thermal response is designed optimum ratio by NASA CEA program. It was compared by performing the evaluation of these size/shape/sensitivity/calorimetry characteristics.

  • PDF

Equilibrium Analysis on the Pyrotechnic Reactions of Igniters (열역학 평형 계산을 이용한 점화제의 점화반응 분석)

  • Eom, Ki Heon;Kim, Kyung Min;Won, Yong Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1036-1037
    • /
    • 2017
  • This study investigated the aging reactions of three kinds of igniters(BKNO3, THPP, ZPP). The life-time of igniter depends on oxygen and moisture in the air. For example, Magnesium contained in the $BKNO_3$ reacts with oxygen and water to form oxide and hydrate. This reaction has an adverse effect on ignition reaction and could be information to analyze aging. Thermodynamic calculation could interpret the aging reaction by calculating flame temperature applying several variables(initial temperature, composition, etc.). If combustion is not completed because of aging igniters, flame temperature will be formed at a low range. The result of this research is expected to support the analysis of igniters aging reactions.

  • PDF

Thermal Decomposition Behavior of Boron-Potassium Nitrate (BKNO3) by TGA (열중량분석법에 의한 Boron-Potassium Nitrate(BKNO3)의 열분해 특성 연구)

  • Go, Cheongah;Kim, Junhyung;Park, Youngchul;Moon, Youngtaek;Seo, Taeseok;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.104-110
    • /
    • 2019
  • The thermal decomposition characteristics of boron-potassium nitrate ($BKNO_3$) were investigated by non-isothermal thermal gravimetric analysis (TGA). Two steps of mass loss were observed in the temperature range between room temperature and $600^{\circ}C$. Kinetic parameters of the thermal decompositions were evaluated from the measured TGA curves using the AKTS Thermokinetics Software. For the first step of mass loss ($220-360^{\circ}C$) corresponding to the thermal decomposition process of the binder (Laminac/Lupersol), the activation energy is in the range of approximately 120-270 kJ/mol when evaluated by Friedman's iso-conversional method, while the value of activation energy varies in the range of approximately 150-400 kJ/mol during the second step process ($360-550^{\circ}C$).

Aft-Igniter Performance related to the Formulation and the Shape of Ignition Charge (점화제 조성과 형상에 따른 후방 점화기 성능)

  • Jung, Jin-Suk;Ahn, Gil-Hwan;Jang, Seung-Gyo;Ryu, Byung-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.387-393
    • /
    • 2014
  • The combustion pressure and thrust of aft-igniter were measured to investigate the characteristics of ignition charge. Granule and pellet shape ignition charge of $BKNO_3$ and MTV(Magnesium-Teflon-Viton) were used for igniters. Ignitions with granule charges show abrupt increases of combustion pressure and thrust compared to those of pellet charge. $BKNO_3$ igniter shows higher combustion pressure than MTV igniter due to higher combstion rate. Mg particle size affects the combustion pressure of MTV igniter.

Confirmation of Long-term stability on THPP using thermodynamic and kinetic analysis (열역학적 및 속도론적 분석을 통한 THPP의 노화 안정성 확인)

  • Lee, Junwoo;Kim, Sangwon;Choi, Kyoungwon;Lee, Seung Bok;Ryu, Byungtae;Park, Taiho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.513-516
    • /
    • 2017
  • When stored for long periods in a powder-based device (PMD), the explosive power in the device is aged and the explosive power is changed. Thus, The gunpowder used in the PMD must be chemically and physically stable for both internal and external factors. Since $BKNO_3$ and THPP are used as representative gunpowder, thermodynamic and kinetic analyzes were performed based on these gunpowders. Differential scanning calorimeter (DSC) was used to analyze the calorific value and reaction rate. As a result, there was no significant change in caloric value and reaction rate in THPP. In addition, XPS and TEM-EDS analyzes were performed to confirm the formation of oxide films directly related to aging, and no oxide films were observed as a result of thermal analysis. In addition, XPS and TEM-EDS analyzes were performed to confirm the formation of oxide films directly related to aging. As a results, no oxide films were observed. It can be concluded that THPP is the most famous gunpowder in terms of long-term stability.

  • PDF

Ignition of Fuel-rich Propellant Coated with Ignition Support Material in the Ramjet Combustor Condition (램젯 연소실 조건에서 점화보조제가 도포된 Fuel-rich 추진제의 점화)

  • Jung, Woosuk;Baek, Seungkwan;Kim, Youngil;Kwon, Taesoo;Park, Juhyun;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.79-88
    • /
    • 2017
  • Ignition test of the fuel-rich propellant coated with ignition support material in the ramjet combustor condition was conducted. Ignition delay and flame holding was measured. Fuel grain consist of HTPB mixed with AP particle 15 wt.%, Al particle 5 wt.%. To cause the short ignition delay, ignition support consist of $NC/BKNO_3$ and composite propellant was coated to the fuel grain. Ethanol blended $H_2O_2$ gas generator control the temperature, pressure, $O_2$ concentration in the oxidizer gas in the air. Gas is supplied with mass flux of $200kg/m^2s$. Through the test ignition support operated well and ignition delay of 0.6 second and the Flame was sustained.

Effects of Additives and Ignition Support Material on HTPB Fuel Grains for Solid Fuel Ramjet (고체연료 램젯용 HTPB 연료그레인에 첨가제와 점화보조제가 미치는 영향)

  • Jung, Woosuk;Baek, Seungkwan;Jung, YeonSoo;Kwon, Taesoo;Park, Juhyun;Kim, Incheol;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.957-967
    • /
    • 2017
  • Firing test of the fuel grain for solid fuel ramjet with additives and ignition support material was conducted. Fuel grain consist of HTPB mixed with AP particle 15 wt.%, Boron particle 5 wt.%. To cause the short ignition delay, ignition support consist of $NC/BKNO_3$ and composite propellant was coated to the fuel grain. An oxidant gas having a controlled temperature, pressure and oxygen composition close to the air condition in the ramjet combustor was supplied using the Ethanol blended $H_2O_2$ gas generator. Gas was set to flow at a mass flow rate of 150 g/s and mass flux of $200kg/m^2s$ in the grain port. Through the test, ignition support operated well and ignition delay of 0.5. During the test, stable chamber pressure with 8 bar and high combustion efficiency of 0.86 was confirmed.

  • PDF