• Title/Summary/Keyword: $Au@TiO_2$

Search Result 162, Processing Time 0.031 seconds

Growth behavior of YBCO films on STO substrates with ZnO nanorods

  • Oh, Se-Kweon;Lee, Cho-Yeon;Jang, Gun-Eik;Kim, Kyoung-Won;Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.16-19
    • /
    • 2009
  • The influence of nanorods grown on substrate prior to YBCO deposition has been investigated. We studied the microstructures and characteristic of $YBa_2Cu_3O_{7-\delta}$ films fabricated on $SrTiO_3$ (100) substrates with ZnO nanorods as one of the possible pinning centers. The growth density of ZnO nanorods was modulated through Au nanoparticles synthesized on top of the STO(100) substrates with self assembled monolayer. The density of Au nanoparticles is approximately $240{\sim}260\;{\mu}m^{-2}$ with diameters of 41~49 nm. ZnO nanorods were grown on Au nanoparticles by hot-walled PLD with Au nanoparticles. Typical size of ZnO nanorod was around 179 nm in diameter and $2{\sim}6\;{\mu}m$ in length respectively. The ZnO nanorods have apparently randomly aligned and exhibit single-crystal nature along (0002) growth direction. Our preliminary results indicate that YBCO film deposited directly on STO substrate shows the c-axis orientation while YBCO films with ZnO nanorods exhibit any mixed phases without any typical crystal orientation.

Electrical Properties of (Bi,Y)4Ti3O12 Thin Films Grown by RF Sputtering Method

  • Nam, Sung-Pill;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.98-101
    • /
    • 2007
  • Yttrium(Y)-substituted bismuth titanate $(Bi_{4-x},Y_x)Ti_3O_{12}$ [x=0, 0.25, 0.5, 0.75, 1](BYT) thin films were deposited using an RF sputtering method on the $Pt/TiO_2/SiO_2/Si$ substrates. The structural properties and electrical properties of yttrium-substituted $(Bi_4-xYx)Ti_3O_{12}$ thin films were analyzed. The remanent polarization of $(Bi_4-xYx)Ti_3O_{12}$ films increased with increasing Y-content. The $(Bi_{3.25}Y_{0.75})Ti_3O_{12}$ films fabricated using a top Au electrode showed saturated polarization-electric field(P-E) switching curves with a remanent polarization(Pr) of $8{\mu}C/cm^2$ and coercive field (Ec) of 53 kV/cm at an applied voltage of 7 V. The $(Bi_{3.25}Y_{0.75})Ti_3O_{12}$ films exhibited fatigue-free behavior up to $4.5{\times}10^{11}$ read/write switching cycles at a frequency of 1MHz.

Catalytic synthesis and properties of β-Ga2O3 nanowires by metal organic chemical vapor deposition (MOCVD를 이용한 금속 촉매 종류에 따른 β-Ga2O3 나노 와이어의 제작과 특성)

  • Lee, Seunghyun;Lee, Seoyoung;Jeong, Yongho;Lee, Hyojong;Ahn, Hyungsoo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Catalytic synthesis and properties of ${\beta}-Ga_2O_3$ nanowires grown by metal organic chemical vapor deposition are reported. Au, Ni and Cu catalysts were suitable for the growth of $Ga_2O_3$ nanowires under our experimental conditions. The $Ga_2O_3$ nanowires grown by using Au, Ni and Cu catalysts showed different growth rates and morphologies in each case. We found the $Ga_2O_3$ nanowires were grown by the Vapor-Solid (VS) process when Ni was used as a catalyst while the Vapor-Liquid-Solid (VLS) was a dominant process in case of Au and Cu catalysts. Also, we found nanowires showed different optical properties depend on catalytic metals. On the other hand, for the cases of Ti, Sn and Ag catalysts, nanowires could not be obtained under the same condition of Au, Cu and Ni catalytic synthesis. We found that these results are related to the different characteristics of each catalyst, such as, melting points and phase diagrams with gallium metal.

Electrical Characterization and Metal Contacts of ZnO Thin Films Grown by the PLD Method (PLD 방법에 의해서 증착된 ZnO 박막의 전기적 특성 및 접합 특성에 관한 연구)

  • 강수창;신무환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.15-23
    • /
    • 2002
  • In this study, metal/ZnO contacts were thermally annealed at different temperatures (as-dep., 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$, 1000$^{\circ}C$) for the investigation of electrical properties, and surface and interface characteristics. The analysis of the element composition and the chemical bonding state of the surface was made by the XPS(X-ray photoelectron spectroscopy). An attempt was made to establish the electrical property-microstructure relationship for the (Ti, Au)/ZnO. The Ti/ZnO contact exhibits an ohmic characteristics with a relatively high contact resistance of 4.74${\times}$10$\^$-1/ $\Omega$$\textrm{cm}^2$ after an annealing at 400$^{\circ}C$. The contact showed a schottky characteristics when the samples were annealed at higher temperature than 400$^{\circ}C$. The transition from the ohmic to schottky characteristics was contributed from the formation of the oxide layers as was confirmed by the peaks for O-O and Ti-O bondings in XPS analysis. For the Au/ZnO contact the lowest contact resistance was obtained from the as-deposited sample. The resistance was slowly increased with annealing temperature up to 600$^{\circ}C$. The ohmic characteristics were maintained eden fort 600$^{\circ}C$ annealing. The XPS analysis showed that the Au-O intensity was dramatically decreased with temperature above 600$^{\circ}C$.

Probing Polarization Modes of Ag Nanowires with Hot Electron Detection on $Au/TiO_2$ Nanodiodes

  • Lee, Young Keun;Lee, Jaemin;Lee, Hyosun;Lee, Jung-Yong;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.225-225
    • /
    • 2013
  • Nanostructured noble metals have been attractive for their unusual optical properties and are widely utilized for various purposes. The optical properties mainly originating from collective electron oscillation can assist direct energy conversion via surface plasmon resonances. Here, we investigated the effect of surface plasmons of silver nanowires on the generation of hot electrons. It is reported that the surface plasmons of silver nanowires exhibit longitudinal and transverse modes, depending on the aspect ratio of the nanowires. In order to measure the hot electron flow through the metallic nanowires, chemically modified Au/TiO2 Schottky diodes were employed as the electric contact. The silver nanowires were deposited on a Au metal layer via the spray method to control uniformity and the amount of silver nanowire deposited. We measured the hot electron flow generated by photon absorption on the silver nanowires deposited on the Au/TiO2 Schottky diodes. The incident photon-to-current efficiency was measured a function of the photon energy, revealing two polarization modes of siliver nanowires: transverse and longitudinal modes. UV-Vis spectra exhibited two polarization modes, which are also consistent with the photocurrent measurements. Good correlation between the IPCE and UV-vis measurements suggests that hot electron measurement on nanowires on nanodiodes is a useful way to reveal the intrinsic properties of surface plasmons of nanowires.

  • PDF

Synthesis of TiO2 Nanowires by Metallorganic Chemical Vapor Deposition (유기금속 화학기상증착법을 이용한 TiO2 나노선 제조)

  • Heo, Hun-Hoe;Nguyen, Thi Quynh Hoa;Lim, Jae-Kyun;Kim, Gil-Moo;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.686-690
    • /
    • 2010
  • $TiO_2$ nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The $TiO_2$ nanowires were grown at a high density on Si(100) at $510^{\circ}C$, which is near the complete decomposition temperature ($527^{\circ}C$) of the Ti precursor $(Ti(O-iPr)_2(dpm)_2)$. At $470^{\circ}C$, only very thin (< $0.1{\mu}m$) $TiO_2$ film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to $550^{\circ}C$ and $670^{\circ}C$, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The $TiO_2$ nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The $TiO_2$ nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow $TiO_2$ nanowires, which hold significant promise for various photocatalysis and solar cell applications.

Occurrence and Chemical Composition of Ti-bearing Minerals from Drilling Core (No.04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 함 티타늄 광물들의 산상과 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.185-197
    • /
    • 2023
  • The Gubong Au-Ag deposit consists of eight lens-shaped quartz veins. These veins have filled fractures along fault zones within Precambrian metasedimentary rock. This has been one of the largest deposits in Korea, and is geologically a mix of orogenic-type and intrusion-related types. Korea Mining Promotion Corporation drilled into a quartz vein (referred to as the No. 6 vein) with a width of 0.9 m and a grade of 27.9 g/t Au at a depth of -728 ML by drilling (No. 90-12) in the southern site of the deposit, To further investigate the potential redevelopment of the No. 6 vein, another drilling (No. 04-1) was carried out in 2004. In 2004, samples (wallrock, wallrock alteration and quartz vein) were collected from the No. 04-1 drilling core site to study the occurrence and chemical composition of Ti-bearing minerals (ilmenite, rutile). Rutile from mineralized zone at a depth of -275 ML occur minerals including K-feldspar, biotite, quartz, calcite, chlorite, pyrite in wallrock alteration zone. Ilmenite and rutile from ore vein (No. 6 vein) at a depth of -779 ML occur minerals including white mica, chlorite, apatite, zircon, quartz, calcite, pyrrhotite, pyrite in wallrock alteration zone and quartz vein. Based on mineral assemblage, rutile was formed by hydrothermal alteration (chloritization) of Ti-rich biotite in the wallrock. Chemical composition of ilmenite has maximum values of 0.09 wt.% (HfO2), 0.39 wt.% (V2O3) and 0.54 wt.% (BaO). Comparing the chemical composition of rutile at a depth -275 ML and -779 ML, Rutile at a depth of -779 ML is higher contents (WO3, FeO and BaO) than rutile at a depth of -275 ML. The substitutions of rutile at a depth of -275 ML and -779 ML are as followed : rutile at a depth of -275 ML Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4++ (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, rutile at a depth of -779 ML 2 (Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf 4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+, respectively. Based on these data and chemical composition of rutiles from orogenic-type deposits, rutiles from Gubong deposit was formed in a relatively oxidizing environment than the rutile from orogenictype deposits (Unsan deposit, Kori Kollo deposit, Big Bell deposit, Meguma gold-bearing quartz vein).

The dielectric characteristics of $BaTiO_3$ thin capacitor ($BaTiO_3$ 박막 커패시터의 유전특성)

  • 홍경진;김태성;능전준일
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.580-586
    • /
    • 1995
  • 최근 커패시터의 전극은 Pt, Au등으로 이용되고 있다. 이러한 전극의 전기적 특성은 우수하나 고가이다. 본 연구에서는 전극의 저가격화 측면에서 알루미늄 전극 위에 BaTiO$_{3}$를 증착하고 기관의 온도를 실온에서 600[.deg. C]까지 변화시켜 RF스퍼터링법으로 제작하였다. BaTiO$_{3}$세라믹의 유전특성은 구성하고 있는 입자의 강유전 분역 밀도와 입자의 크기에 의존하므로 입자가 성장되는 온도영역에서 입자의 크기와 유전율간의 관계를 연구하였다. 또한 BaTiO$_{3}$박막 커패시터의 유전상수는 BaTiO$_{3}$세라믹과 알루미늄기관의 계면에서 산화특성이 일어나기 때문에 기관온도의 변화에 의해 조사되었다. 기관의 온도를 증가시킴에 따라 결정면의 피크와 강도는 증가하였으며, 유전특성은 결정입자의 크기가 0.8[.mu.m]일때 가장 양호하였다. 유전율값은 기판 온도가 400[.deg. C]일 때 가장 크게 나타났다. 결과적으로, 알루미늄 전극에 BaTiO$_{3}$세라믹을 증착하여 저가의 적층용 세라믹 콘덴서를 제조할 수 있음을 알았다.

  • PDF