• Title/Summary/Keyword: $Ar^+$ laser

Search Result 328, Processing Time 0.029 seconds

Carbon Plume Modeling Assisted by Ar Plasmas (Ar 플라즈마 상태에서 운동하는 탄소 입자 모델링)

  • So, Soon-Youl;Lee, Jin;Chung, Hae-Deok;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2163-2165
    • /
    • 2005
  • A pulsed laser ablation deposition (PLAD) technique has been used for producing fine particle as well as thin film at relatively low substrate temperatures. However, in order to manufacture and evaluate such materials in detail, motions of plume particles generated by laser ablation have to be understood and interactions between the particles by ablation and gas plasma have to be clarified. Therefore, this paper was focused on the understanding of plume motion in laser ablation assisted by Ar plasma at 50(mTorr). Two-dimensional hybrid model consisting of fluid and particle models was developed and three kinds of plume particles which are carbon atom (C), ion $(C^+)$ and electron were considered in the calculation of particle method It was obtained that ablated $C^+$ was electrically captured in Ar plasmas by strong electric field (E). The difference between motions of the ablated electrons and $C^+$ made E strong and the collisional processes active.

  • PDF

Kinetic Study on the Low-lying Excited States of Ga Atoms in Ar

  • Kuntack Lee;Ju Seon Goo;Ja Kang Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.663-669
    • /
    • 1994
  • Decay kinetics of Ga(5s), Ga(5p) and Ga(4d) atoms in Ar were studied by laser induced fluorescence technique. Theground state gallium atoms in the gas phase were generated by pulsed dc discharge of trimethyl gallium and argon mixtures. Both pulsed discharge and YAG-DYE laser system were controlled by a dual channel pulse generator and the delay time between the end of discharge and laser pulses was set 3.0-6.0 ms. The Ga(5s) and Ga(4d) atoms were generated by single photon excitation from the ground state Ga atoms and radiative lifetimes as well as the total quenching rate constants in Ar were obtained from the pressure dependence of the fluorescence decay rates. The Ga(5p) atoms were populated by a two-photon excitation method and the cascade fluorescence from Ga(5s) atoms were analyzed to extract quenching rate constant of Ga(5p) atoms by Ar in addition to radiative lifetimes of Ga(5p) state. The magnitudes of the quenching rate constants by Ar for the low-lying excited states of Ga atoms are 1.6-3$ {\times}10^{-11}cm^3$ molecul$e^{-1}s^{-1}$, which are much larger than those for alkali, alkaline earth and Group 12 metals. Based on the measured rate constants, kinetic simulations were done to assign state-to-state rate constants.

Weldability in Nd:YAG Laser of Sintered Material Depend on Shielding Gases (보호가스에 따른 소결체의 Nd:YAG 레이저 용접성)

  • Kim, Yong;Yang, Hyun-Seok;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • This study includes the effects of shielding gas types and flow rate on Nd:YAG Laser weldability of sintered material. The types of shielding gas were evaluated for He, Ar and N2. Bending strength, porosity rate, hardness and aspect ratio testing of laser weld are carried out to evaluated the weldability. As a results, Ar gas was showed the best welding strength even it has the most porosity content on weld metal, and depend on increases the gas flow rate, it was not only got deeper penetration depth but also showed higher bending strength. Therefore we could know that bending strength is not only affect the porosity content but also melting area.

  • PDF

The Manufacture and Properties Analysis of Anti-Reflection Coating Thin Film of Laser Diode Mirror (레이저 다이오드 Mirror면의 Anti-Reflection 코팅 박막 제작 및 특성 분석)

  • Ki, Hyun-Chul;Kim, Sean-Hoon;Kim, Sang-Taek;Kim, Hyo-Jin;Kim, Hwe-Jong;Hong, Kyung-Jin;Min, Yong-Ki;Cho, Jae-Cheol;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.103-106
    • /
    • 2006
  • Semiconductor laser diode has a reflective facet in a both-ends side fundamentally. Laser performance for improving, Anti-Reflection and High-reflection coating on the facet of semiconductor laser diode. To prevent internal feedback from both facets for realizing superluminescent diode and reducing the reflection-induced intensity noise of laser diode, it's key techniques are AR/HR coatings. In the study AR coating film were manufactured by Ion-Assisted Deposition(IAD) system. Then manufactured coating film measurement electrical properties(L-I-V, Se, Resistor) and Optical properties (wavelength FFP)

  • PDF

Development of Computer Simulation Code of Excimer Lasers and Experimental Confirmation

  • Maeda, M.;Okada, T.;Muraoka, K.;Chino, K.U.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.58-63
    • /
    • 1999
  • In order to analyze the discharge-pumped KrF excimer laser, computer simulation code is developed. On the other hand, the electron velocity distribution in a discharge plasma, measured by the Thomson scattering method, showed the Maxwellian, while the code predicted non-Maxwellian. This disagreement was solved by introducing the electron-electron collision into the simulation code. We also developed a simulation code on the CO2 laser-heated plasma in high-pressure Ar gas, and estimated the formation process of Ar2 excimer. The code predicted the possibility of the Ar2 laser action at 126 nm.

  • PDF

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1505-1509
    • /
    • 2004
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25 mm plano-convex lens having 2.5 mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an Ar-Ion continuous wave laser and a pulsed Nd-YAG laser. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. For the particle diameter of 0.5 ${\mu}m$, the particle beam was broken due to the secondary flow at Reynolds number of 694. Using the Ar-Ion CW laser, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about 16 %, 11.4 % and 9.6 % for PSL particle size of 2.5 ${\mu}m$, 1.0 ${\mu}m$, and 0.5 ${\mu}m$ respectively at the Reynolds number of 320. Particle beam width was minimized around the laser power of 0.2 W. However, as increasing the laser power higher than 0.4 W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively. On the other hand, using 30 Hz pulsed Nd-YAG laser, the effect of the radiation pressure on the particle beam width was not distinct unlike Ar-Ion CW laser.

  • PDF

Laser Copper Patterning by wettability improvement of Silicon (레이저에 의한 실리콘 표면의 습윤성 향상과 구리 패터닝)

  • Kim, Dong-Yung;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1080-1083
    • /
    • 2002
  • In this paper, we have studied with regard to the use of lasers for modifying the surface properties of silicon in order to improve it's wettability and adhesion characteristics. Using an Nd:YAG pulse laser, the wettability and adhesion characteristics of silicon surface have been developed by an Nd:YAG pulse laser. It was found that the laser treatment of silicon surfaces modified the surface energy. In the result of wetting experiments, by the sessile drop technique using the distilled water, wetting characteristic of silicon after the laser irradiation shows a decreased value of the contact angle. In case of the laser treated silicon surface, laser direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films$(Cu(HCOO)_2{\cdot}4H_2Q)$, using a focused $Ar^+$ laser beam$(\lambda=514.5nm)$ on the silicon substrates. The deposited patterns were measured by energy dispersive X-ray(EDX), Scanning Electron Microscopy(SEM) and surface profiler($\alpha$-step) to examine the cross section of deposited copper lines and linewidth.

  • PDF

Effects of shielding Gas Types on $CO_2$ Laser Weldability (보호가스에 따른 Tailored Blank 레이저 용접성 평가에 관한 연구)

  • 정봉근;유순영;박인수;이창희
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.30-38
    • /
    • 1998
  • This study includes the efface of shielding gas types on $CO_2$ laser weldability of low carbon automotive galvanized steel. The types of shielding gas evaluated are He, $CO_2$, Ar, $N_2$, 50%Ar+50%$N_2$. The weld penetration, strength, formability(Erichsen test) of Laser weld are found to be strongly dependent upon the types of shielding gas used. Further, the maximum travel speed and flow rate to form a keyhole weld is also dependent upon types of shielding gas. The ability of shielding gas in removing plasma plume and thus increasing weld penetration is believed to be closely related with ionization/dissociation potential, which determine the period of plasma formation and disappearance. Further, thermal conductivity and reactivity of gas with molten pool also give strong effect on penetration and porosity formation which in turn affect on the formability and strength.

  • PDF

The Effect of Shielding Gas on Forming Characteristics for Direct Laser Melting (Direct Laser Melting 공정시 차폐가스가 성형 특성에 미치는 영향)

  • Han, S.W.;Shin, S.G.R.;Joo, B.D.;Lee, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.334-339
    • /
    • 2013
  • Direct Laser Melting is a prototyping process whereby a 3-D part is built layer wise by melting the metal powder with laser scanning. This process is strongly influenced by the shielding gas and the laser operating parameters such as laser power, scan rate, layering thickness, and rescanning. The shielding gas is especially important in affecting the microstructure and mechanical properties. In the current study, fabrication experiments were conducted in order to analyze the effect of shielding gas on the forming characteristics of direct laser melting. Cylindrical parts were produced from a Fe-Ni-Cr powder with a 200W fiber laser. Surface quality, porosity and hardness as a function of the layering thickness and shield gas were evaluated. By decreasing the layering thickness, the surface quality improved and porosity decreased. The selection of which shield gas, Ar or $N_2$, to obtain better surface quality, lower porosity, and higher hardness was examined. The formability and mechanical properties with a $N_2$ atmosphere are better than those parts formed under an Ar atmosphere.