• 제목/요약/키워드: $Ar^+$ Ion

검색결과 635건 처리시간 0.029초

Mechanical and Antibacterial Properties of Copper-added Austenitic Stainless Steel (304L) by MIM

  • Nishiyabu, Kazuaki;Masai, Yoshikaze;Ishida, Masashi;Tanaka, Shigeo
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.227-234
    • /
    • 2002
  • For the austenitic stainless steel (304L) manufactured by metal injection molding(MIM), the effects of copper content and sintering temperature on the mechanical properties, antibacterial activities, corrosion resistance, and electric resistances were investigated. The specimens were prepared by injection molding of the premixed powders of water-atomized 304 L and Cu with poly-acetyl binders. The green compacts were prepared with various copper contents from 0 to 10 wt.% Cu, which were debound thermally at 873 K for 7.2 ks in $N_2$gas atmosphere and subsequently sintered at various temperatures from 1323 K to 1623 K for 7.2 ks in Ar gas atmosphere. The relative density and tensile strength of the sintered compacts showed the minimum values at 5 and 8 wt.% Cu, respectively. Both the relative density and the tensile strength of the specimen with 10 wt.% Cu sintered at 1373 K showed the highest values, higher than those of copper-free specimen. Antibacterial activities investigated by the plastic film contact printing method for bacilli and the quantitative analysis of copper ion dissolved in water increased as the increase of the copper content to stainless steels. It was also verified by the measurement of pitting potential that the copper addition in 304 L could improve the corrosion resistance. Furthermore the electric conductivity increased with the increase of copper content.

나노-스피어 리소그래피를 이용한 2차원 광자결정 구조의 제작 (Fabrications of Two Dimension Photonic Crystal Structure by using Nano-Sphere Lithography Process)

  • 양회영;김준형;이현용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.389-389
    • /
    • 2008
  • 나노-스피어 리소그래피는 기존 리소그래피 방법에 비해 나노 크기의 패턴을 저비용에 공정이 간단하고, 대면적 패터닝이 가능하다는 장점이 있다. 본 논문에서는 나노-스피어 리소그래피 공정을 이용하여 실리콘 기판 위에 2차원 광자결정 구조를 제작하였다. 실리콘 기판 위에 직경이 500 nm 인 폴리스티렌 나노-스피어를 스핀 코팅 방법으로 단일막을 형성하였다. 스핀코팅 조건은 스핀속도와 시간을 조절하여 1단계는 400 rpm에서 10초, 2단계는 800 rpm에서 120초, 3 단계는 1400 rpm 에서 10초로 공정하였다. 그리고 산소 플라즈마를 이용한 반응성 이온 식각공정으로 폴리스티렌 나노-스피어의 크기를 조절할 수 있었으며, 이때 실리콘 기판 위에 형성된 다양한 크기의 폴리스티렌 나노-스피어 단일막은 금속막 증착시 마스크의 역할을 하게 된다. 금속막의 증착은 RF 마그네트론 스퍼터링 시스템을 이용하였으며, 공정 조건은 RF power를 100W, 공정 압력을 5 mTorr, Ar 유량을 10sccm으로 하였다. 스퍼터링 공정 후 폴리스티렌 나노-스피어를 제거함으로써 2 차원 광자결정 구조를 제작할 수 있었다. 실험 결과 단일막으로 형성된 폴리스티렌 나노-스피어의 크기를 조절함으로써 다양한 2차원 광자결정 구조 제작이 가능함을 확인할 수 있었다.

  • PDF

콤비네이숀 마그네트론 스퍼터링법에 의한 IGZO 투명전도막의 제조 (Fabrication of IGZO Transparent Conducting thin Films by The Use of Combinational Magnetron Sputtering)

  • 정재혜;이세종;조남인;이재열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.425-425
    • /
    • 2008
  • The transparent conducting oxides(TCOs) are widely used as electrodes for most flat panel display devices(FPDs), electrodes in solar cells and organic light emitting diodes(OLED). Among them, indium oxide materials are mostly used due to its high electrical conductivity and a high transmittance in the visible spectrum. The present study reports on a study of the electrical and optical properties of IGZO thin films prepared on glass and PET substrates by the combinational magnetron sputtering. We use the targets of IZO and Ga2O3 for the deposition process. In some case the deposition process is coupled with the End-Hall ion-beam treatment onto the substrates before the sputtering. In addition we control the deposition rate to optimize the film quality and to minimize the surface roughness. Then we investigate the effects of the Ar gas pressure and RF power during the sputtering process upon the electrical, optical and morphological properties of thin films. The properties of prepared IGZO thin films have been analyzed by using the XRD, AFM, a-step, 4-point probe, and UV spectrophotometer.

  • PDF

누에 및 Autographa californica 핵다각체병 바이러스에 대한 유전자 재조명 (Genomic Recombination of Bombyx mori and Autographa californica Nuclear Polyhedrosis Viruses)

  • 우수동;박범석;박지현;정인식;양재명;강석권
    • 한국응용곤충학회지
    • /
    • 제32권4호
    • /
    • pp.407-413
    • /
    • 1993
  • 숙주범위가 서로 다른 Autographa californica NPV(AcNPV)와 Bombyx mori NPV(BmNPV)를 Spodoptera frugiperda(Sf9) 또는 Bombyx mori(BmN-4)의 세포에 동시감염(coinfection)시킨 후, 숙주범위가 확장된 재조합 바이러스를 Sf9세포에서 10종 BmN-4세포에서 2종씩 플라크 순화하여 선발하였다. 각 재조합 바이러스 DNA의 제한효소 분석결과는 한번 이상의 재조합이 일어났음을 보여주었다. 재조합 바이러스 RecB-8의 전자현미경 관찰결과는 다각체의 모양이 모바이러스인 AcNPV나 BmNPV와는 전혀 다른 정사면체 모양이었으며 또한, 모바이러스와는 달리 virion이 다각체에 거의 매립되어 있지 않은 특징을 보였다.

  • PDF

Effect of annealing atmosphere on the properties of chemically deposited Ag2S thin films

  • Pawar, S.M.;Shin, S.W.;Lokhande, C.D.;Kim, J.H.
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.34.2-34.2
    • /
    • 2009
  • The silver sulphide (Ag2S) thin films have been chemically deposited from an alkaline medium (pH 8 to 10) by using a silver nitrate and thiourea as a Ag and S ion precursor sources. Ethylene Damine tetraacetic acid (EDTA) was used as a complexing agent. The effect of annealing atmosphere such as Ar, N2+H2S and O2 on the structural, morphological and optical properties of Ag2S thin films has been studied. The annealed films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques for the structural, morphological, and optical properties, respectively. XRD studies reveal that the as-deposited thin films are polycrystalline with monoclinic crystal structure, is converted in to silver oxide after air annealing. The surface morphology study shows that grains are uniformly distributed over the entire surface of the substrate. Optical absorption study shows the as-deposited Ag2S thin films with band gap energy of 0.92eV and after air annealing it is found to be 2.25 eV corresponding to silver oxide thin films.

  • PDF

Time-resolved PIV와 POD기법을 이용한 단일노즐 버블링 유동 특성에 관한 연구 (Characteristics of Bubble-driven Flow by Using Time-resolved PIV and POD Technique)

  • 이승재;김종욱;김현동;김경천
    • 한국가시화정보학회지
    • /
    • 제6권1호
    • /
    • pp.41-46
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble stream in a rectangular water tank is studied. The time-resolved PIV technique is adopted for the quantitative visualization and analysis. 488 nm Ar-ion CW laser is used for illumination and orange fluorescent ($\lambda_{ex}=540nm,\;\lambda_{em}=560nm$) particle images are acquired by a PCO 10bit high-speed CCD camera (1280$\times$1024). To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is 3 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by time-resolved POD analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortex structures moving along with large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy.

EXPERIMENTS ON THE INTERACTION OF WATER SPRAYS WITH POOL FIRES

  • Han, Yong-Shik;Kim, Myung-Bae;Shin, Hyun-Dong
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.518-525
    • /
    • 1997
  • A series of measurements and visualization to investigate the interaction of water sprays with pool fires is presented. Fire source is a small-scale pool burner with methanol, ethanol and gasoline. Measurements of temperatures, $O_2$, $CO_2$, and CO concentrations along the plume centerline are carried out to observe pool fire structures without water sprays. Visualization by the Ar-ion laser sheet shows flow pattern of droplets of the sprays above the pool fires. It is observed that in the case of methanol and ethanol, water sprays continuously penetrate into the center of fuel surfaces. The gasoline pool fire allows intermittent penetration of water sprays because of pulsating characteristics of the gasoline flame. To evaluate the cooling effect of the fuel surface by the sprays, the temperature was measured at the fuel surface. As soon as the mists reach the fuel surface of methanol and ethanol, the temperatures of the fuel surface decrease rapidly below the boiling point, and then the fires are extinguished. Due to the application of mist upon the gasoline fire, though the fuel temperature decrease abruptly at the time of the injection, such a rapid decrease do not continue till the extinction point.

  • PDF

Effects of surface modification of $Nafion^{(R)}$ Membrane on the Fuel Cell Performance

  • Prasanna, M.;Cho, E.A.;Ha, H.Y.;Hong, S.A.;Oh, I.H.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 추계 학술발표회 논문집
    • /
    • pp.133-138
    • /
    • 2004
  • Proton exchange membrane fuel cell (PEMFC) is considered as a clean and efficient energy conversion det ice for mobile and stationary applications. Anions all the components of the PEMFC, the interface between the electrolyte ,and electrode catalyst plays an important role in determining tile cell performance since the electrochemical reactions take place at the interface in contact with tile reactant gases. Therefore, to increase the interface area and obtain a high-performance PEMFC, surface of the electrolyte membrane was roughened by Ar$^{+}$ beam bombardment. The results imply that by modifying surface of the electrolyte membrane, platinum loading can be reduced significantly without performance loss. To optimize the surface treatment condition, effects of ion dose density on characteristics of the membrane/electrode interface were examined by measuring the cell performance, impedance spectroscopy, and cyclic voltammograms. Surface of the modified membranes were characterized using scanning electron microscopy and FT-IR.R.

  • PDF

알루미늄의 발수 표면처리 기술 개발 (Development of Surface Treatment for Hydrophobic Property on Aluminum Surface)

  • 변은연;이승훈;김종국;김양도;김도근
    • 한국표면공학회지
    • /
    • 제45권4호
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구 (A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma)

  • 조성일;정구환
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.