• 제목/요약/키워드: $Al_2O_3-ZrO_2$ ceramics

검색결과 104건 처리시간 0.031초

실험적 방법에 의한 파인세라믹스의 연삭성에 관한 연구 (A study on the Grindability of Fine Ceramics by Experimental Method)

  • 김성겸
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.35-42
    • /
    • 2011
  • This paper describes the characteristics of high speed grinding and the influence of wheel surface speed V and a grindability of the grinding materials. The various fine ceramics pieces was ground by metal and vitrified bonded diamond wheel. The surface roughness of fine ceramics(Zirconia($ZrO_2$), Silicon Carbide(SiC), Silicon Nitride($Si_3N_4$), Alumina($Al_2O_3$)) decreases from $0.05{\mu}m(R_{max})$ to $0.025{\mu}m(R_{max})$ when the wheel speed at grinding point increases the wheel speed. Relation between the temperature at grinding point and surface roughness was linear. Abrasive jet machining(AJM), a specialized from of shot blasting, is considered one of the most helpful micro machining methods for hard and brittle materials such as glasses and ceramics by constant pressure grinding.

Structural and Electrical Properties of Pb(Zr0.4Ti0.6O3/PbZr0.6Ti0.4)O3 Heterolayered Thick Films

  • Park, Sang-Man;Lee, Sung-Gap;Yun, Sang-Eun;Noh, Hyun-Ji;Lee, Young-Hie;Bae, Seon-Gi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권6호
    • /
    • pp.279-282
    • /
    • 2006
  • [ $Pb(Zr_{0.4}Ti_{0.6}O_{3}\;and\;Pb(Zr_{0.6}Ti_{0.4})O_{3}$ ] paste were made and alternately screen-printed on the $Al_{2}O_{3}$ substrates. We have introduced a press-treatment to obtain a good densification of screen printed films. The porosity of the thick films was decreased with increasing the applied pressure and the thick films pressed at 60 MPa showed the dense microstructure and thickness of about $76\;{\mu}m$. The remanent polarization and coercive field increased with increasing applied pressure and the values for the PZT thick films pressed at 60 MPa were $17.04{\mu}C/cm^{2}$ and 78.09 kV/cm, respectively.

플라즈마 용사법에 의한 금속면에 세라믹 코팅된 표면과 범용고분자와의 접착특성 (Adhesion Characteristics of Polymers and Ceramic Surface Coated on Metal by Plasma Spray)

  • 이경희;권순훈;조원제;하창식
    • 한국재료학회지
    • /
    • 제9권7호
    • /
    • pp.724-734
    • /
    • 1999
  • 본 연구는 플라즈마 용사법에 의해 일반구조용 강재 (SS41, 30$\times$40$\times$60mm$^{t}$ )와 연마제로 블래스팅을 실시한 강재 (SS41P) 및 SS41P에 세라믹 분말을 코팅한 강재 (SS41PC)에 대한 SEM, 표면경도. 표면거칠기. 접촉각을 측정하였으며 이들의 표면형태에 대한 기계적 .물리적 특성을 고찰하였다 사용한 세라믹 용사분말은 \circled1 $Al_2$O$_3$ : alumina \circled2 $Al_2$O$_3$ 95%, TiO$_2$ 5% : alumina titania \circled3 ZrO$_2$: 95%, $Y_2$O$_3$5% : zirconia yttria이었다. 또한 SS41, SS41P. SS41PC에 대해 범용 고분자인 PE, PVC, PP PET, PS를 접착시킨 후 이들의 표면접착특성을 조사하였다. 그 결과 인장전단강도와 박리강도의 특성에서 SS41보다는 SS41P와 SS41PC의 표면상태가 고분자들을 접착시켰을 때 더 우수한 접착강도특성을 나타내었다. 범용 고분자들의 접착강도는 PE > PET > PP > PS > PVC 순이었다. 그리고 세라믹 표면과 고분자의 접착특성은 세라믹 표면의 표면거칠기 정도와 고분자의 세라믹 표면에 대한 anchor 효과의 크기 순으로 증가하였으며, SS41PC와 PE의 접착강도는 분자표면의 규칙성에 기인된 Synergy효과에 의해서 PVC보다 우수하게 나타난 것으로 판정된다

  • PDF

Erratum to: "Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy"

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.317-321
    • /
    • 2003
  • The grain-boundary microcracking materials in the system A1$_2$Ti $O_{5}$ -ZrTi $O_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$K compared to 8.29$\times$10$^{-6}$K of pure ZrTi $O_4$and 0.68$\times$10$^{-6}$K of polycrystalline A1$_2$Ti $O_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of A1$_2$Ti $O_{5}$ , 9.70$\times$10$^{-6}$K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal axes of the A1$_2$Ti $O_{5}$ phase.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1996년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

3Y-TZP의 기계적 물성에 미치는 영향: (II) 알루미나의 첨가 (Effect on Mechanical Properties of 3Y-TZP; (II) Addition of Alumina)

  • 양성구;배경만;조범래;강종봉
    • 한국세라믹학회지
    • /
    • 제42권6호
    • /
    • pp.417-424
    • /
    • 2005
  • Although a lot of studies in fracture toughness of Y-TZP ceramics for structural applications have been done, it remains an important challenge to be able to improve fracture toughness of Y-TZP ceramics. In this research, milling method adding monoclinic zirconia and $Al_2O_3$ to 3Y-TZP was introduced to improve the fracture toughness of 3Y-TZP. Experimental results showed that addition of small amount of $Al_2O_3$ causes to make lots of oxygen vacancies (VO) by substituting $Al^{3+}$ for $Zr^{4+}$. It is believed that the produced vacancies provides useful routes far mass transfer. Y-TZP ceramics having higher microhardness and better fracture toughness was fabricated by sintering at $1400^{\circ}C$.

하소이트리아 소결체의 특성과 플라즈마저항성 평가 (Plasma Resistance Evaluation and Characteristics of Yttria Ceramics Sintered by Using Calcination Yttria)

  • 최진삼;;배원태
    • 한국세라믹학회지
    • /
    • 제50권5호
    • /
    • pp.348-352
    • /
    • 2013
  • The evaluation of plasma resistance and the characteristics of yttria ceramics fabricated by calcination yttria as a starting material without dopants under an oxidation atmosphere was investigated. Regardless of the starting materials, as-received, and calcined yttria powder, XRD patterns showed that all samples have $Y_2O_3$ phase. The three cycling process inhibited a large grain, which occurs frequently during the yttria sintering, and a high density ceramic with a homogeneous grain size was obtained. The grain size of the sintered ceramic was affected by the starting powders. The smaller the grain size, the larger were the Young's modulus and KIC. Compared to $Al_2O_3$ and $ZrO_2$ ceramics, yttria ceramics showed a 3 times larger plasma resistance and a 1.4~2.2 times lower weight loss during the plasma etching test, respectively.

Effects of Transition Metal Oxides on Mechanical Properties of Y-TZP

  • Jae Sung Park;Young Soo Chung;Hyo-Duk Nam
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.331-335
    • /
    • 1999
  • Mechanical propeties of $Y_2O_3$-containing tetragonal $ZrO_2$ polycrystals(Y-TZP) were investigated. Several additives were used to modify the hardness fracture toughness of Y-TZP. The effects of these individual additives were discussed and their interactions were also analyzed. Each additive, such as CoO, $Fe2O3, MnO_2$ was found to deteriorate the mechanical propeties of Y-TZP when it was used singly. But the fracture toughness of Y-TZP was singnificantly improved when these additives and $Al_2O_3$ were added in combination at a certain ratio.

  • PDF

소결조건에 따른 $Pb(Zr_xTi_{1-x})O_3$ 이종층 후막의 유전특성 (Dielectric Properties of $Pb(Zr_xTi_{1-x})O_3$ Heterolayered Thick Films with Variation of Sintering Conditions)

  • 이성갑;이종덕;박상만
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.359-360
    • /
    • 2005
  • PZT(20/80) and PZT(80/20) powders, prepared by the sol-gel method, were mixed with an organic vehicle and the PZT(20/80)/PZT(80/20) heterolayered thick films were fabricated by the screen-printing method on Pt/$Al_2O_3$ substrates. The structural properties such as DTA, X-ray diffraction and microstructure, were examined as a amount of the excess PbO. In the DTA analysis, the formation of the polycrystalline perovskite phase was observed at around $880^{\circ}C$. The average thickness of the PZT heterolayered thick films was approximately $80{\mu}m$.

  • PDF

천이금속산화물이 첨가된 Y-TZP 세라믹스의 상안정성 및 물성특성 (Phase Stability and Characteristics of Y-TZP Ceramics doped with Transition Metal Oxides)

  • 박재성;정영수;남효덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 1998
  • The effects of the additions of transition metal oxides on ZrO$_2$ - Y$_2$O$_3$ (Y$_2$O$_3$ - containing tetragonal zirconia polycrystals : Y-TZP) system has been studied by investigating fracture toughness and phase stability of the sintered specimens. In the specimens sintered at 1450$^{\circ}C$ for 2hrs in air the phase transformation from tetragonal to monoclinic was observed. The ratios of monoclinic phase to tetragonal phase were changed with the additions of CoO, Fe$_2$O$_3$ and MnO$_2$, respectively, from 0.00 to 8.00wt%. The fracture toughness was increased with increasing the monoclinic to tetragonal phase ratio and was maximum at the ratio of about 18%. However, the hardness was decreased with increasing the ratio. The additions of CoO, Fe$_2$O$_3$ and MnO$_2$ together into Y-TZP resulted in more complex behaviors of fracture toughness and hardness. The specimen with the additions of 1.5wt% Fe$_2$O$_3$, 3.0wt% Al$_2$O$_3$ and 1.5wt% CoO showed the monoclinic to tetragonal phase ratio of 18% and the highest toughness of 10.8 MPa.m$\^$$\frac{1}{2}$/ and Vickers hardness of 1201kgf/mm$^2$.

  • PDF