• Title/Summary/Keyword: $Al_2O_3-SiC$ Composite

Search Result 181, Processing Time 0.024 seconds

Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 마모특성)

  • 부후이후이;송정일
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.75-84
    • /
    • 2003
  • The purpose of this study is to investigate the wear properties of Saffil/Al, Saffil/A12O3/Al and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction and wear tester under both dry and lubricated conditions. The wear properties of the three composites were evaluated in many respects. The effects of Saffil fibers, $\textrm{Al}_2\textrm{O}_3$ particles and SiC particles on the wear behavior of the composites were investigated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction(COF) during the wear process was recorded by using a computer. Under dry sliding condition, Saffil/SiC/Al showed the best wear resistance under high temperature and high load, while the wear resistances of Saffil/Al and Saffi1/$\textrm{Al}_2\textrm{O}_3$/Al were very similar. Under dry sliding condition, the dominant wear mechanism was abrasive wear under mild load and room temperature, and the dominant wear mechanism changed to adhesive wear as load or temperature increased. Molten wear occurred at high temperature. Compared with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under lubricated condition, Saffil/Al showed the best wear resistance among them, and its COF value was the smallest. The dominant wear mechanism of the composites under lubricated condition was microploughing, but microcracking also occurred to them to different extents.

Effect of Crystal Phases on the Properties of Sintered Glass-Ceramics for $CaO-MgO-Al_2O_3-SiO_2$ System ($CaO-MgO-Al_2O_3-SiO_2$계의 글라스-세라믹에서 결정상이 소결체에 미치는 영향)

  • 김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.558-564
    • /
    • 1992
  • The effect of composed phase in the hot pressed CaO-MgO-Al2O3-SiO2 glass-ceramic has been investigated through microstructure studies, thermal, physical and mechanical properties. Sintering was done in the condition at the temperature range 900~95$0^{\circ}C$ for 20~120 mins under 7.5 MPa unilateral pressure. Sintered ceramics were composed of diopside, anorthite, residual glass and the portion of each phase was dependent on the sintering temperature and the holding time: as the temperature increases, the amount of diopside increased and then the rate of increase of diopside reduced with increasing anorthite. The thermal expansion coefficient of hot pressed was reduced with increasing crystallinity of hot pressed and was in the range of 6.69~7.46$\times$10-6 K-1 below $600^{\circ}C$. The elastic constant of hot pressed increased with increasing crystallinity up to about 80%, but after that was reduced due to the change of microstructure. The flexural strength of sintered ceramics was decreased with higher temperature and holding time, while the fracture toughness of those increased. It was shown that the physical and mechanical properties of hot pressed ceramic were related to the fraction of composed sintered ceramics, similar to a particulate composite, to the crystallinity of 80% of the glass-ceramic.

  • PDF

The Properties on Ceramic/glass Composites of SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 Borosilicate Glass System for Low Temperature Ceramics (저온 소결 세라믹스용 SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 붕규산염계 세라믹/유리 복합체의 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Shim, Sang-Heung;Park, Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • The effects of $B_2O_3-SiO_2-R(R;CaO,\;BaO,\;ZnO,\;Bi_2O_3)$ borosilicate glass system on the sintering behavior and microwave dielectric properties of ceramic/glass composites were investigated as functions of modifier, glass addition ($30{\sim}50\;vol%$) and sintering temperature ($500{\sim}900^{\circ}C$ for 2 hrs). The addition of 50 and 45 vol% glass ensured successful sintering below $900^{\circ}C$. Sintering characteristics of the composites were well described in terms of modifier. Borosilicate glass enhanced the reaction with $Al_{2}O_{3}$ to form pores, second phases and liquid phases, which was responsible to component of modifier. Dielectric constant (${\varepsilon}_{r},\;Q{\times}f_{o}$) and temperature coefficient of resonant frequency (${\tau}_{f}$) of the composite with 50 and 45 vol% glass contents($B_{2}O_{3}:SiO_{2}:R=25:10:65$) demonstrated A-CaBS(7.8, 2,560 GHz, -81ppm/$^{\circ}C$), A-BaBs(5.8, 3.130 GHz, -64 ppm/$^{\circ}C$), A-ZnBS(5.7, 17,800 GHz, -21 ppm/$^{\circ}C$), A-BiBs(45 vol% glass in total)(8.3, 2,700 GHz, -45 ppm/$^{\circ}C$) which is applicable to substrate requiring an low dielectric properties.

Wear Behavior of Al/SiC in Thermal Spray Process (알루미늄 판 표면에 용사된 Al/SiC의 마모 거동)

  • Kim, H.J.;You, M.H.;Lee, S.H.;Lee, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • Tribologcal property of the ceramics used in severe condition was investigated and both $Al_2O_3$ ball and Al/SiC composite made by thermal spray process[TSP] were used as a specimen in this study. Four kinds of material couple in ball and disk specimens were tested in the dry condition by using ball-on-disk type tribo-tester. Friction coefficient, surface roughness, wear rate, and photograph of the worn surface were investigated. Generally, High SiC contents[$40{\sim}50%$] specimens showed very low friction coefficient below 0.05 and little wear rate in dry condition. And also, low SiC contents[0%] specimens showed a moderate wear rate and high coefficient of friction at the same condition.

  • PDF

Sintering and Characterization of SiC-matrix Composite Including TRISO Particles (TRISO 입자를 포함하는 SiC 복합소결체의 소결 및 특성 평가)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.418-423
    • /
    • 2014
  • Fully ceramic micro encapsulated (FCM) nuclear fuel is a concept recently proposed for enhancing the stability of nuclear fuel. FCM nuclear fuel consists of tristructural-isotropic (TRISO) fuel particles within a SiC matrix. Each TRISO fuel particle is composed of a $UO_2$ kernel and a PyC/SiC/PyC tri-layer which protects the kernel. The SiC ceramic matrix is created by sintering. In this FCM fuel concept, fission products are protected twice, by the TRISO coating layer and by the SiC ceramic. The SiC ceramic has proven attractive for fuel applications owing to its low neutron-absorption cross-section, excellent irradiation resistivity, and high thermal conductivity. In this study, a SiC-matrix composite containing TRISO particles was sintered by hot pressing with $Al_2O_3-Y_2O_3$ additive system. Various sintering conditions were investigated to obtain a relative density greater than 95%. The internal distribution of TRISO particles within the SiC-matrix composite was observed using an x-ray radiograph. The fracture of the TRISO particles was investigated by means of analysis of the cross-section of the SiC-matrix composite.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiC$ Composites

  • Hyun Jin Kim;Soo Whon Lee;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.317-323
    • /
    • 1999
  • Si3N4-TiC composites have been known as electrically conductive ceramics. $Si_3N_4-TiC$ composites with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ were hot pressed in $N_2$ environment. The mechanical properties including hardness, fracture toughness, and flexural strength and tribological properties were investigated as a function of TiC content. $Si_3N_4-40$ vol% TiC composite was hot pressed at $1,750^{\circ}C$, $1,800^{\circ}C$, and $1,850^{\circ}C$ for 1, 3 and 5 hours in $N_2$ gas. Mechanical and tribolgical properties depended on microstructures, which were controlled by hte TiC content, hot press temperature, and hot press holding time. However, mechanical properties and tribological behaviors were degraded by the chemical reaction between TiC and N. The chemically reacted products such as TiCN, SiC, and $SiO_2$ were detered by the X-ray diffraction analysis.

  • PDF

Lubricated Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 윤활마모특성)

  • Fu, Hui-hui;Bae, Sung-in;Ham, Kyung-chun;Song, Jung-il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.135-138
    • /
    • 2002
  • The purpose of this study is to investigate the lubricated wear properties of Saffil/Al, Saffil/$Al_2O_3/Al$ and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction & wear tester with long sliding distance. The wear properties of the three composites were evaluated in many respects. The effects of Saffil, $Al_2O_3$ particles and SiC particles on the wear behavior of the composites under lubricated conditions were elucidated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction (COF) during the wear process was recorded by using a computer. Comparing with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under intermediate load, Saffil/Al showed best wear resistance among them, and its COF value is the smallest. The dominant wear mechanism of the composites was microploughing, but microcracking also occurred for them to different extent.

  • PDF

A Study on Hot Extrusion Characteristics of Particulate Reinforced Aluminium Matrix Composite. (입자분산강화 알루미늄 복합재의 압출가공특성에 관한 연구)

  • Gwon, Hyeok-Cheon;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.953-959
    • /
    • 1995
  • It was investigated that reinforced species, billet condition and extrusion variation in Al 6061 composite material effected on extrusion process of particulate reinforced composite material. The strength of composite material with reinforcement species revealed SiC$\sub$w/> A1$_2$O$\sub$3f/ > A1$_2$O$\sub$3f/ > A1$_2$O$\sub$3f/ orderly. K$\sub$w/ increased as volute fraction increased in all composite material. The composite materials reinforced by A1$_2$ $O_3$required the larger pressure in hot extrusion process than those by SiC$\sub$p/ at all condition. Extrusion process tended to decrease as the semi-angle of extrusion dies increased because larger contact area caused larger shear friction. Extrusion temperature went up about 50$^{\circ}C$ in low elevated deformation temperature. In extrusion temperature above 500$^{\circ}C$, severe tearing occurred on extrusion surface. More reinforcement in volume fraction, more hot tearing.

  • PDF

Flexure and tension tests of newly developed ceramic woven fabric/ceramic matrix composites (새로 개발된 세라믹 직포 보강 세라믹 기지 복합체의 인장 및 곡강도 시험)

  • Dong-Woo Shin;Jin-Sung Lee;Chang-Sung Lim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.73-87
    • /
    • 1996
  • The mechanical properties of 2D ceramic composites fabricated bythe newly developed powder infiltration and subsequent multiple impregnation process were characterised by both 3-point flexure and tensile tests. These tests were performed with strain gauge and acoustic emission instrument. The woven fabric composites used for the test have the basic combinations of $Al_{2}$$O_{3}$ fabric/$Al_{2}$$O_{3}$ and SiC fabric (Tyranno)/SiC. Uniaxially aligned SiC fibre(Textron SCS-6)/SiC composites were also tested for comparison, The ultimate flexural strength and first-matrix cracking stress of SiC fabric/SiC composite with 73% of theoretical density were about 300 MPa and 77 MPa respectively. However, the ultimate tensile strengths of composite were generally one third of flexural strengths, and first-matrix cracking stress in a tension test was also much lower than the value obtained from flexure test. The lower mechanical properties measured by tension test were analysed quantitatively bythe differences in stressed volume using Weibull statistics. This showed that the ultimate strength and the firs-tmatrix cracking stress of woven laminate composites were mainly determined bythe gauge length of fibres and the stressed volume of matrix respectively. Incorporation of SiC whiskers into the matrix increased first-matrix cracking stress by increasing the matrix failure strain of composites.

  • PDF