• 제목/요약/키워드: $Al_2O_3$ sol

검색결과 225건 처리시간 0.026초

산화(酸化)티탄 나노입자(粒子)가 담지(擔持)된 칼슘 알루미늄 형광체(螢光體) (Calcium Aluminate Phosphor Supported $TiO_2$ Nanoparticles)

  • ;김진환;강석민;류호진
    • 자원리싸이클링
    • /
    • 제18권4호
    • /
    • pp.24-30
    • /
    • 2009
  • 희토류 원소를 기반으로한 알루미늄산 형광체에 담지된 산화티탄은 졸겔방법 으로 제조되었다. 이렇게 제조된 산화티탄 나노입자의 재료물성을 분석하기 위해 XRD, FT-IR, DRS UV-Vis, TEM 측정을 실시하였다. 형광체에 담지된 산화티탄 입자의 소결 전후의 XRD분석결과는 600도 이상의 온도에서 아나타제에서 루틸로 상변화가 일어나지 않았다. 600도 이상의 온도에서 지속적인(장시간) 열처리 후에도 형광체에 담지된 산화티탄이 결정화도가 높은 아나타제로 존재 하는 것은 형광체 지지체와 담지된 산화티탄의 서로 다른 결정입계에 의하여 결정성장과 상변화에 필요한 치밀화가 억제되기 때문으로 판단된다. DRS측정결과 형광체에 담지된 산화티탄은 산화티탄이 없는 형광체에 비하여 보다 긴 장파로 쉬프트한 것은 밴드갭 에너지의 환원을 나타낸다. 이러한 형광체에 담지된 산화티탄의 FT-IR 스펙트럼은 피크의 위치가 더 높은 파수로 이동하였다. 이것은 산화티탄 입자와 지지체 사이의 공유결합이 관계하기 때문 이라 판단된다. TEM 이미지는 형광체 지지체에 다른 입자 크기로 담지되어 있는 산화티탄의 분산, 결정화 및 입자 형상을 나타낸다.

PMN 계 유전체 적용 EL 소자의 광전특성 연구 (The Study of Opto-electric Properties in EL Device with PMN Dielectric Layer)

  • 금정훈;한다솔;안성일;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제22권9호
    • /
    • pp.776-780
    • /
    • 2009
  • In this study, the opto-electric properties of EL devices with PMN dielectric layer with variation of firing tempereature were investigated. For the PMN dielectric layer process, the paste was prepared by optimization of quantitative mixing of PMN powder, $BaTiO_3$, Glass Frit, $\alpha$-Terpineol and ethyl cellulose. The EL device stack consists of Alumina substrate ($Al_2O_3$), metallic electrode (Au), insulating layer (manufactured PMN paste), phosphor layer (ELPP- 030, ELK) and transparent electrode (ITO), which is well structure as a thick film EL device. The phase transformation properties of PMN dielectric with various firing temperatures of $150^{\circ}C$ to $850^{\circ}C$ was characterized by XRD. Also the opto-electric properties of EL devices with different firing temperature were investigated by LCR meter and spectrometer. We found the best opto-electric property was obtained at the condition of $550^{\circ}C$ firing which is 3432.96 $cd/m^2$ at 1948.3 pF Capacitance, 40 kHz Frequency, 40% Duty, Vth+330 V voltage.

베트남 순환자원을 활용한 지반주입재 개발을 위한 실험적 연구 (An Experimental Study for the Development of Soil Injection Materials using Vietnam's Circulating Resources)

  • 이영원;이광우;서세관;유완규;박재현
    • 한국건설순환자원학회논문집
    • /
    • 제10권4호
    • /
    • pp.457-464
    • /
    • 2022
  • 본 연구에서는 베트남에서 발생하는 4종의 플라이애시에 대하여, XRF, 강열감량, SEM, PSA분석을 실시하였고, 국내 발생 화력발전 플라이애시와 비교하였다. 그 결과 PC보일러 플라이애시의 경우, SiO2, Al2O3, Fe2O3의 함량이 약 70 %를 차지하여 국내 플라이애시와 비슷한 화학조성을 갖는 것으로 나타났다. 또한, 베트남 고로슬래그와 국내 고로슬래그를 비교한 결과 유사한 품질기준과 성능을 나타내는 것으로 확인되었다. 베트남에서 수급한 4종의 플라이애시를 이용하여 지반주입재 배합시험을 실시하였으며, 양생 28일 기준 압축강도는 7.60~13.25 MPa로 나타났다. 가장 압축강도가 크게 나타난 Vinh Tan 플라이애시 원료를 선정하여 약액주입공법용 지반주입재 원료로 활용하였다. 약액주입공법의 배합은 급결재로서 규산소다 3호와 실리카졸을 사용하였다. Vinh Tan 플라이애시를 사용한 지반주입재의 겔타임과 호모겔 압축강도를 측정한 결과 국내 건설현장 적용기준을 만족하는 것으로 나타나, Vinh Tan 플라이애시의 경우 약액주입공법용 지반주입재로 활용이 가능할 것으로 사료되었다.

물유리를 이용한 실리카계 박막의 광학적 및 기계적 특성 (Optical and mechanical properties of silicate film using a water glass)

  • 이경무;임용무;황규석
    • 한국안광학회지
    • /
    • 제5권2호
    • /
    • pp.187-192
    • /
    • 2000
  • 본 연구에서는 물 유리의 경제성을 바탕으로 광학적 및 기계적인 특성을 조사하여 투명하고 높은 경도를 가진 표면 보호막의 기능을 검토하기 위하여 $SiO_2-Na_2O-R_mO_n$계 박막을 제조하였다. 물 유리에 CaO와 $Al_2O_3$를 소량의 1 N HCl 1N $NH_4OH$와 함께 각각 첨가하여 코팅용 졸을 준비하였다. Stainless steel. Si wafer. soda-lime-silica glass등 다양한 기판 위에 spin-coating 한 후 질소 분위기 하에서 500, 750 및 $900^{\circ}C$로 최종 열처리를 행했다. 제조된 막은 Knoop 경도계로 micro-hardness를 측정하였다. 막의 표면 질소 함유량을 알아보기 위하여 EDX 분석을 행하였다. 그리고 Field Emission Scanning Electron Microscope(FE-SEM)을 이용하여 막의 표면구조를 관찰하였으며, UV-VIS 스펙트라 측정을 통하여 막의 두께와 반사 특성을 조사하였다.

  • PDF

PZT 이종층 후막의 구조적, 전기적 특성 (Structural and Electrical Properties of PZT Heterolayered Thick Films)

  • 이성갑;임성수;이영희;이종덕;박상만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1915-1917
    • /
    • 2005
  • PZT(40/60) and PZT(60/40) powders, prepared by the sol-gel method, were mixed with an organic vehicle and the PZT(40/60)/PZT(60/40) heterolayered thick films were fabricated by the screen-printing method on $Pt/Al_2O_3$ substrates. The structural properties such as DTA, X-ray diffraction and microstructure, were examined as a function of the applied pressure. In the DTA analysis, the formation of the polycrystalline perovskite phase was observed at around $880^{\circ}C$. The average thickness of the PZT heterolayered thick films which were coated five times was approximately $95-100{\mu}m$.

  • PDF

PZT(20/80)/PZT(80/20) 이종층 후막의 유전특성 (Dielectric Properties of PZT(20/80)/PZT(80/20) Heterolayered Thick Films)

  • 이성갑;이영희;배선기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1918-1920
    • /
    • 2005
  • PZT(20/80) and PZT(80/20) powders, prepared by the sol-gel method, were mixed with an organic vehicle and the PZT(20/80)/PZT(80/20) heterolayered thick films were fabricated by the screen-printing method on $Pt/Al_2O_3$ substrates. The structural properties such as DTA, X-ray diffraction and microstructure, were examined as a function of the sintering temperature. In the DTA analysis, the formation of the polycrystalline perovskite phase was observed at around $880^{\circ}C$. The average thickness of the PZT heterolayered thick films was approximately $80-90{\mu}m.$

  • PDF

염료감응형 태양전지에서의 고분자 전해질 종류에 따른 이온전도도와의 상호관계 (The correlation between ionic conductivity and cell performance with various compositions of polymer electrolyte in dye-sensitized solar cells)

  • 차시영;김수진;이용건;강용수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.306-308
    • /
    • 2007
  • Poly(ethylene glycol) dimethyl ether (PEGDME)/fumed silica/ 1-methyl -3-propylimidazolium iodide (MPII)/$I_2$ mixtures were used as polymer electrolytes in solid state dye-sensitized solar cells (DSSCs). The contents of MPII were changed and the concentration of $I_2$ was fixed at 0.1 mole% with respect to the MPII. The maximum ionic conductivity was obtained at [EG]:[MPII]:[$I_2$]=10:1.5:0.15. It was supposed that the maximum of ionic conductivities would match with that of cell efficiencies, if the ionic conductivity is a rate determining step in the sol id state DSSCs. However, the maximum composition did not show the maximum solar cell performance, indicating the mismatch between ionic conductivity and cell performance. This suggests that the ionic conductivity may not be the rate controlling step in determining the cell efficiency in these experimental conditions, whereas other parameters such as the electron recombination might play an important role. Thus, we tried to modify the surface of the $TiO_2$ particles by coating a thin metal oxide such as $Al_2O_3$ or $Nb_2O_5$ layer to prevent electron recombination. As a result, the maximum of the cell efficiency was shifted to that of the ionic conductivity. The peak shifts were also attempted to be explained by the diffusion coefficient and the lifetime of electrons in the $TiO_2$ layer.

  • PDF

Pulverization and Densification Behavior of YAG Powder Synthesized by PVA Polymer Solution Method

  • Im, Hyun-Ho;Lee, Sang-Jin
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.573-580
    • /
    • 2020
  • YAG (Yttrium Aluminum Garnet, Y3Al5O12) has excellent plasma resistance and recently has been used as an alternative to Y2O3 as a chamber coating material in the semiconductor process. However, due to the presence of an impurity phase and difficulties in synthesis and densification, many studies on YAG are being conducted. In this study, YAG powder is synthesized by an organic-inorganic complex solution synthesis method using PVA polymer. The PVA solution is added to the sol in which the metal nitrate salts are dissolved, and the precursor is calcined into a porous and soft YAG powder. By controlling the molecular weight and the amount of PVA polymer, the effect on the particle size and particle shape of the synthesized YAG powder is evaluated. The sintering behavior of the YAG powder compact according to PVA type and grinding time is studied through an examination of its microstructure. Single phase YAG is synthesized at relatively low temperature of 1,000 ℃ and can be pulverized to sub-micron size by ball milling. In addition, sintered YAG with a relative density of about 98 % is obtained by sintering at 1,650 ℃.

폴리머용액법 및 알루미나 seed를 도입한 YAG:Ce3+ 형광체 분말 합성 (Synthesis of YAG:Ce3+ Phosphor Powders by Polymer Solution Route and Alumina Seed Application)

  • 김용현;이상진
    • 한국분말재료학회지
    • /
    • 제20권1호
    • /
    • pp.37-42
    • /
    • 2013
  • $YAG:Ce^{3+}$ phosphor powders were synthesized using a $Al_2O_3$ seed (average particle size: 5 ${\mu}m$) by the polymer solution route. PVA solution was added to the sol precursors consisting of the seed powder and metal nitrate salts for homogeneous mixing in atomic scale. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1400^{\circ}C{\sim}1500^{\circ}C$ in $N_2/H_2$ atmosphere. The final powders were characterized by using XRD, SEM, PSA, PL and PKG test. All synthesized powders were crystallized to YAG phase without intermediate phases of YAM or YAP. The phosphor properties and morphologies of the synthesized powders were strongly dependent on the PVA content. Finally, the synthesized $YAG:Ce^{3+}$ phosphor powder heated at $1500^{\circ}C$, which is prepared from 12:1 PVA content and has an average particle size of 15 ${\mu}m$, showed similar phosphor properties to a commercial phosphor powder.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF