• 제목/요약/키워드: $Al_2O_3$ sol

Search Result 225, Processing Time 0.035 seconds

The Synthesis and the Electrochemical Properties of Al Doped $V_2O_5$ (Al이 도핑된 오산화바나듐의 합성 및 전기화학적 특성)

  • Park, Heai-Ku;Joung, Ok-Young;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.491-495
    • /
    • 2005
  • Vanadium pentoxide xerogels with a doping ratio of $Al/V_2O_5$ ranging from 0.01 to 0.05 were synthesized by doping Al into $V_2O_5$ xerogel via the sol-gel process. By using the synthesized $Al_xV_2O_5$, the $Li/Al_xV_2O_5$ cells were assembled to investigate the chemical and electrochemical properties. Surface morphology of the $Al_xV_2O_5$ xerogel showed an anisotropic corrugated sheet-like matrix, and the interlayer distance was about $11.5{\AA}$. The IR spectra of the $Al_xV_2O_5$ revealed that the doped Al was coordinated to the vanadyl group in $V_2O_5$. The $Al_xV_2O_5$ xerogels showed enhanced reversibility and energy density compared with the $V_2O_5$ xerogel. The specific capacity of the $Al_{0.05}V_2O_5$ xerogel was more than 200 mAh/g at 10 mA/g discharge rate, and cycle efficiency was about 90% after the 31st cycling test between 1.9 V and 3.9 V.

Characterization of Cordierite by SEM, Microanalysis X and TEM (SEM, X선 마이크로 분석기, TEM에 의한 코디에라이트의 특성 연구)

  • Han, Byoung-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1250-1254
    • /
    • 1990
  • The cordierite (MgO, SiO2, Al2O3) is of great interest for microelectronic packaging of integrated circuits. Its main advantages are low dielectric constant and low thermal expansion. The cordierite precursor is obtained by sol-gel synthesis using organic and inorganic compounds. The obtained cordierite precursor is an amorphous state at about 900\ulcorner. Green and fired cordierite samples were studied by SEM. Microanalysis X and TEM for microscopic properties. The fired cordierite shows forte diminution of Mg in comparison with its value at volume and the deficit of Mg compensates by sugmentation of Al and Si \ulcornercordierite and \ulcornercordierite are present near the surface (< 100) and small quantities of magnesium aluminate (MgAl2O4)is presented spinnel phase.

  • PDF

The crystallization behaviours of cordierite gel derived from sil-gel method and glass prepared by the conventional melting method. (용융법과 졸겔법으로 제조된 Cordierite 계 유리와 겔의 결정화 거동)

  • Park, Won-Gyu
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The crystallization behaviours of cordierite gel derived from sol-gel method and glass prepared from conventional melting method with or without $TiO_2$ as nucleants are compared. The densification temperature of gel is $810^{\circ}C$ and its chemical structure identified by IR analysis is same as that of glass melted by conventional method. The beginning crystallization temperature of gel is $965^{\circ}C$ lower than that of melted glass with 10wt% $TiO_2$, which is $978^{\circ}C$. The crystalline phases developed from gel during heat treatment are identified as spinel, $\beta$-quartz solid solution and $\alpha$-cordierite crystal and crystalline phases in case of glass are (Mg,Al)TiOn and $\beta$-quartz solid solution and $\alpha$-cordierite crystal, respectively. The crystallization in melted glass with nucleants occurs through bulk crystallization and in case of that without nucleants surface crystallization occurs, while the crystallization in gel is internal crystallization from interface between particles formed after densification.

  • PDF

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

A Solid-State NMR Study of Coordination Transformation in Amorphous Aluminum Oxide: Implication for Crystallization of Magma Ocean (고상 NMR을 이용한 비정질 알루미나의 상전이 연구: 마그마 바다 구성 용융체의 결정화 과정의 의의)

  • Ryu, Saebom;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.283-293
    • /
    • 2012
  • In order to have better insights into the chemical differentiation of Earth from its magma ocean phase to the current stratified structure, detailed information of crystallization kinetics of silicate melts consisting of the magma ocean is essential. The structural transitions in oxide glasses and melts upon crystallization provide improved prospects for a systematic and quantitative understanding of the crystallization processes. Here, we report the $^{27}Al$ 3QMAS NMR spectra for sol-gel synthesized $Al_2O_3$ glass with varying temperature and annealing time. The NMR spectra for the amorphous $Al_2O_3$ show well-resolved Al coordination environments, characterized with mostly $^{[4,5]}Al$ and a minor fraction of $^{[6]}Al$. The fraction of $^{[5]}Al$ in the alumina phase decreases with increasing annealing time at constant temperature. The NMR results of $Al_2O_3$ phases also imply that multiple processes (e.g., crystallization and/or changes in structural disorder within glasses) could involve upon its phase transition. The current results and method can be useful to understand crystallization kinetics of diverse natural and multi-component silicate glasses and melts. The potential result may yield atomic-level understanding of Earth's chemical evolution and differentiation from the magma ocean.

Phase Transformation of 2 Components(CaO-, $Y_2O_3$-, MgO-$ZrO_2$) and 3 Components(MgO-$ZrO_2-Al_2O_3)$ Zirconia by X-ray Diffraction and Raman Spectroscopy (X-선회절과 Raman 분광분석을 이용한 2성분계(CaO-, $Y_2O_3$-, MgO-$ZrO_2$) 및 3성분계(MgO-$ZrO_2-Al_2O_3)$ Zirconia의 상전이연구)

  • 은희태;황진명
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.145-156
    • /
    • 1997
  • ZrO2 phase transformations depending on the type and amount of dopants and the sintering temperatures were studied for the 2 components (CaO-, Y2O3-, MgO-ZrO2) and the 3 components(MgO-ZrO2-Al2O3)ZrO2 powder by X-ray diffraction and Raman spectroscopy. In the CaO- and Y2O3-ZrO2 systems, as the CaO and Y2O3 contents increased to 6~15mol% and 3~15mol% respectively, we were not able to identify between tetragonal and cubic in the X-ray diffraction patterns. On the other hand, all Raman modes shifted to lower wavenumbers, decreasing in intensity and the number of bands, markedly. These phenomena were caused by tetragonallongrightarrowcubic phase transformation and interpreted by the breakdown of the wave vector selection rule(k=0) and the structural disorder associated with the formation of oxygen sublattice which was caused by the substitution between Zr4+ ion and Ca2+ or Y3+ ion in ZrO2 matrix. The monoclinic to cubic phase transformation occurred in 10mol% MgO-ZrO2 system. As the Al2O3 content increased from 0 to 20mol% in the MgO-ZrO2-Al2O3 systems, cubic phase transformed to monoclinic phase, this is because the MgO didn't play a role in a stabilizer because of the formation of the spinel(MgAl2O4) by the reaction between MgO and Al2O3, Also, the ZrO2 phase transformation was explained by the change of it's lattice parameters depending on the type and amount of dopants. Namely, as the amount of dopant increased to 10~13mol%, the axial ra-tio c/a came close to unity with increasing the lattice parameter a and decreasing the lattice parameter c. At that time, the tetragonallongrightarrowcubic phase transformation occurred.

  • PDF

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

Synthesis of Monolithic Gel to Bulk glass-Ceramic in Multicomponent Li2O-Al2O3-SiO2 System (Sol-Gel법에 의한 Li2O-Al2O3-SiO2계 괴상겔 및 결정화유리의 합성)

  • 양중식;작화제부
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.541-551
    • /
    • 1988
  • The purpose of this investigation was to prepare multicomponent monolithic Li-Al-Si gels of composition(mol%) 16.67 Li2O-16.67 Al2O3-66.67 SiO2 and to convert the gels to monolithic glass-ceramic at low temperature without melting. The hydrolysis, DTA, TGA, TMA, SEM, pore distribution, density and the activation energy for crystallization of the glass-ceramic formation with rawmaterials of which tetraethl orhosilicate of networkforming cation(Si) is partially hydrolyzed, aluminum isoproxide and lithium methoxide prepared by Li-metal react with methanol were studied. The results were as follows : 1) Monolithic gels which were added with additional water, resulting in a total water content 2.5 to 3.0 times the stoichiometric amount required to fully hydrolyze the alkoxides. 2) Specimens were dried to form crylinders 60mm in length and 40mm in diameter in about 800 hrs at 5$0^{\circ}C$. 3) $\beta$-eucryptite crystals and $\beta$-spodumene crystals were detected in samples heated above 75$0^{\circ}C$. 4) Within the temperature and range of 25-50$0^{\circ}C$ and 1,00$0^{\circ}C$ the thermal expansion coefficient for crystallized samples were shown as 2.6-5.7$\times$10-7/$^{\circ}C$ and 7.4-12.5$\times$10-7/$^{\circ}C$, respectively. 5) The activation energy for the crystal growth was 11.01kcal/mol at 794$^{\circ}C$ to 85$0^{\circ}C$.

  • PDF

SOl Pressure Sensors (SOI 압력(壓力)센서)

  • Chung, Gwiy-Sang;Ishida, Makoto;Nakamura, Tetsuro
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.5-11
    • /
    • 1994
  • This paper describes the characteristics of a piezoresistive pressure sensor fabricated on a SOI (Si-on-insulator) structure, in which the SOI structures of Si/$SiO_{2}$/Si and Si/$Al_{2}O_{3}$/Si were formed by SDB (Si-wafer direct bonding) technology and hetero-epitaxial growth, respectively. The SOI pressure sensors using the insulator of a SOI structure as the dielectrical isolation layer of piezoresistors, were operated at higher temperatures up to $300^{\circ}C$. In the case of pressure sensors using the insulator of a SOI structure as an etch-stop layer during the formation of thin Si diaphragms, the pressure sensitivity variation of the SOI pressure sensors was controlled to within a standard deviation of ${\pm}2.3%$ over 200 devices. Moreover, the pressure sensors fabricated on the double SOI ($Si/Al_{2}O_{3}/Si/SiO_{2}/Si$) structures formed by combining SDB technology with epitaxial growth also showed very excellent characteristics with high-temperature operation and high-resolution.

  • PDF

Surface Modification of Alumina Ceramic with Mg2Al4Si5O18 Glass by a Sol-Gel Process (졸-겔 공정으로 합성된 코디어라이트를 이용하여 알루미나의 표면개질)

  • Choi, Pil-Gyu;Chu, Min Cheol;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite ($Mg_2Al_4Si_5O_{18}$) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from $Al(OC_3H_7)_3$, $Mg(OC_2H_5)_2$ and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were ${\mu}$-cordierite calcined at $1100^{\circ}C$ for 1 h. The shape of synthesized cordierite was changed from ${\mu}$-cordierite to ${\alpha}$-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.