• Title/Summary/Keyword: $Al_2O_3$ particles

Search Result 503, Processing Time 0.028 seconds

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Fabrication of Al2O3/Fe-Ni Nanocomposites by Pressureless Sintering and their Magnetic Properties (상압소결에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 자기적 특징)

  • Lee, Hong-Jae;Jeong, Young-Keun;NamKung, Seok;Oh, Sung-Tag;Lee, Jai-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.769-774
    • /
    • 2002
  • The powder mixture in which Fe-Ni alloy particles of 20 nm were homogeneously dispersed on $Al_2O_3$ particle surfaces was prepared by hydrogen reduction of $Al_2O_3$ and metal oxide powders. $Al_2O_3$/Fe-Ni nanocomposites fabricated by pressureless sintering were only composed of $Al_2O_3$ and ${gamma}$-Fe-Ni phases and achieved over 98% of the theoretical density at the sintering temperature above $1350^{\circ}C$. The highest strength and toughness of the composites were 574 MPa and 3.9 MP$a{\cdot}m1/2$, respectively. These values were about 20% higher than these of monolithic $Al_2O_3$ sintered at the same conditions. Nanocomposites showed ferromagnetic properties and coercive force was increased with decrease of the average particle size of dispersions.

The Wear Resistance of Electroless Nickel and Electroless Composite(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond) Coating Layers (무전해 니켈도금과 무전해복합도금(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond)의 내마모성 비교)

  • Kim, M.;Chang, D. Y.;Jeong, Y. S.;Ro, B. H.;Lee, K. H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.193-206
    • /
    • 1994
  • A wear behavior of electroless (Ni-P-X, X: SiC, $Al_2O_3$, Diamond) composite coating layers, formed under various conditions on commerical grade low carbon steel, has been investigated using Taber abrasion tester and scanning electron microscope. Several factors, which are type of particles, co-deposited content, particle size, distribution of particles and heat-treatment, influenced the wear resistance. The wear resistance of the composited coating layers after heat-treatment at $400^{\circ}C$ for 1 hr was increased 70 times with diamond, 15 times with SiC and 8 times with $Al_2O_3$, compared with the electroless nickel plating layer without heat-treatment.

  • PDF

Magnetic Behaviors of Isolated Fe-Co-Ni Nanoparticles in a Random Arrangement

  • Yang, Choong Jin;Kim, Kyung Soo;Wu, Jianmin
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.94-100
    • /
    • 2001
  • Fe-Co-Ni particles with an average size of 45 and 135 nm are characterized in terms of magnetic phase transformation and magnetic properties at room temperature. BCC structure of Fe-Co-Ni spherical particles can be synthesized from Fe-Co-Ni-Al-Cu precursor films by heating at 600-80$0^{\circ}C$ for the phase separation of Fe-Co rich Fe-Co-Ni particles, followed by a post heating at $600^{\circ}C$ for 5 hours. The average size of nanoparticles was directly determined by the thickness of precursor films. Exchange interactive hysteresis was observed for the nano-composite (Fe-Co-Ni)+(Fe-Ni-Al) films resulting from the short exchange interface between ferromagnetic Fe-Co-Ni particles surrounded by almost papramagnetic Ni-Al-Fe matrix. Arraying the isolated Fe-Co-Ni nano-particles in a random arrangement on $Al_2O_3$substrate the particle assembly showed a behavior of dipole interactive ferromagnetic clusters depending on their volume and inter-particle distance.

  • PDF

Effect of Metastable Tetragonal $ZrO_2$ Phase on the Mechanicmal Properties in $Al_2O_3-ZrO_2$ System ($Al_2O_3-ZrO_2$계에서 기계적 성질에 미치는 준안정 저앙 $ZrO_2$상의 효과)

  • Kim, Jin-Young;Hwang, Kyu-Hong;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.2
    • /
    • pp.149-155
    • /
    • 1984
  • The effect of $ZrO_2$ dispersed phase on the mechanical properties in $Al_2O_3$-$ZrO_2$system has been studied. There are both metastable tetragonal phase and stable monoclinic phase of $ZrO_2$particles diespersed in Al2O3 matrix at room temperature. Metastable tetragonal $ZrO_2$ changes to the stable monoclinic structure within the stress field of the crack. And microcracks are formed by the expansion of $ZrO_2$during the tetragonal-monoclinic transformation on cooling. Therefore stress-induced phase transformation and inclusion-induced microcracking contribute to the mec-hanical properties of $Al_2O_3$-$ZrO_2$system. Sintered composites containing 10m/o $ZrO_2$ yield KiC values of 6.5MN/$m^{3/2}$ much greater than that of pure $Al_2O_3$ This increase results from microcrack extension and stress-induced phase transformation absor-bing energy by crack propagation. Flexural strength of composites is decreased considerably in comparison with pure $Al_2O_3$ This decrease results from microcrack as a crack former and higher porosity than pure $Al_2O_3$.

  • PDF

Glass Infilteration in Bonding of $BaTiO_3$ and $Al_2O_3$ Layers

  • Shin, Hyo-Soon;Wang, Jong-Hoe;Kim, Jong-Hee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1209-1210
    • /
    • 2006
  • A novel sintering process is proposed for bonding of $BaTiO_3$ and $Al_2O_3$ layers. Common commercial glass was used and infilterated among filler particles. As the kind of commercial glass, the phenomenon of the infilteration is different. Although Sud-1140 glass forms a glass/filler composite, it is not completely infilterated into the filler particles at $900^{\circ}C$. However as the increase of sintering temperature the infilteration of glass was improved. In this study, GA-1 and GA-12 glasses were infilterated the more than Sud-1140 glass. However, they are reacted by $BaTiO_3$ layer. The results of the experiment show that constrained sintering and the co-firing of the different materials were possible for glass infilteration using Sud-1140 glass at $1000^{\circ}C$.

  • PDF

The Effect of $Y_2O_3$ Addition on the Mechanical Alloying of $Ni_3$Al ($Ni_3$Al의 기계적합금화에 미치는 $Y_2O_3$ 첨가의 영향)

  • 이상태
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.205-213
    • /
    • 1997
  • Mechanical alloying of $Ni_3Al$ and $Y_2O_3$ added ODS $Ni_3Al$ from elemental powders was investigated by the X-ray diffraction, differential scanning calorimeter, transmission electron microscopy and optical microscopy. The steady states of $Ni_3Al$ and ODS $Ni_3Al$ powders were reached after mechanical alloying with the condition of the ball-to-powder input ratio of 20:1 for 20 hours and 10 hours, respectively. The addition of nano-sized $Y_2O_3$ particles enhanced cold working and fracture, and subsequently accelerated MA of $Ni_3Al$ powders. DSC results of MAed $Ni_3Al$ powders showed four exothermic peaks at 14$0^{\circ}C$, 234$^{\circ}C$, 337$^{\circ}C$ and 385$^{\circ}C$. From the high temperature X-ray diffraction analysis, it was concluded that the peaks were resulted from the recovery solution of unalloyed Al in Ni, the formation of intermediate phase NiAl, and $LI_2$ ordering of MAed $Ni_3Al$ powders.

  • PDF

Mullitization behavior on the reaction-sintering of ${\alpha} - Al_2O_3/SiO_2$composite powder (${\alpha} - Al_2O_3/SiO_2$복합분말의 반응소결에 있어서 물라이트화 거동)

  • Lee, Jong-Kook;Kim, Hey-Soo;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.122-128
    • /
    • 1995
  • Sintered bodies were prepared from ${\alpha} - Al_2O_3/SiO_2$ composite powders which each alumina particles were surrounded by silica particles and investigated the mullitization behavior on the process of reaction - sintering. Mullitized reaction was started by formation of amorphous aluminosilicate inter - layer and proceeded by diffusion of alumina through this inter-layer. The growth of mullite was happened along the surface of alumina and controlled by the rate of diffusion.

  • PDF

Magnetic Properties of Polycrystalline ${BaFe_{12}{O_{19}$ Films Grown by a Pulsed Laser Ablation Technique

  • Sang Won Kim;Choong Jin Yang
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.46-50
    • /
    • 1996
  • Highly oriented ${BaFe_{12}{O_{19}$ films were obtained by a KrF excimer laser ablation technique using (110)$(012){Al_2}{O_3}$(001)$(012){Al_2}{O_3}$ and $(012){Al_2}{O_3}$ substrates, respectively.The degree of alignment of more than 95% were achieved for (100) on (110)$(012){Al_2}{O_3}$ and (001)$(001){Al_2}{O_3}$ planes, and heteroepitaxial films of (114) on (012)$(012){Al_2}{O_3}$were possible to be grown with a lasing energy density of 6.67 J/$cm^2$ at an oxygen partial pressure ${PO_2}$ of 900 mTorr. The best magnetic properties were obtained from the as-deposited films at the substrate temperature of $700^{\circ}C$, and post annealing treatment was not needed to enhance the magnetic properties. Experimentally saturated magnetization ($4_pi M_S$) of 3600~3800 Gauss and coercivities $(H_c)$ of 3050~3080 Oe, which approach 85% of those of Ba-ferrite bulk composed of single domain particles, were obtained in this study.

  • PDF

A Study on the Preparation of MgO-Al2O3-SiO2 System Ceramic Powders by Spray Pyrolysis Method (분무열분해법에 의한 MgO-Al2O3-SiO2계 화합물의 분체합성 및 그 특성)

  • 박정현;박찬욱;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.397-407
    • /
    • 1988
  • Spinel, mullite and cordierite powders have synthesized from Mg(NO3)2.6H2O, Al(NO3).9H2O and SiCl4 solution by spray pyrolysis method. The two-fluid nozzle was used as an atomizer. The powders of sinel and mullite were synthesized above 80$0^{\circ}C$, but the cordierite composition was noncrystalline for all synthersizing temperature. Those noncrystalline powders were crystallized to $\alpha$-cordierite during calcining at 130$0^{\circ}C$ for 2hrs. The synthesized spinel, mullite and cordierite powders seem to be consisted of agglomerated hollow spherical particles. For all powders, the particle size ranged from submicron to about 3${\mu}{\textrm}{m}$ and mean particle size was about 1.4${\mu}{\textrm}{m}$ in diameter. The specific surface area values of spinel, mullite and cordierite powders were maximum for powders prepared at 100$0^{\circ}C$, and those were 45.9, 25.8 and 13.6$m^2$/gr, respectively.

  • PDF