• Title/Summary/Keyword: $Al_2O_3$ film

Search Result 908, Processing Time 0.022 seconds

A Study on the Thermal Stability of an Al2O3/SiON Stack Structure for c-Si Solar Cell Passivation Application (결정질 실리콘 태양전지의 패시베이션 적용을 위한 Al2O3/SiON 적층구조의 열적 안정성에 대한 연구)

  • Cho, Kuk-Hyun;Chang, Hyo Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.197-200
    • /
    • 2014
  • We investigated the influence of blistering on $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks passivation layers. $Al_2O_3$ film provides outstanding Si surface passivation quality. $Al_2O_3$ film as the rear passivation layer of a p-type Si solar cell is usually stacked with a capping layer, such as $SiO_2$, SiNx, and SiON films. These capping layers protect the thin $Al_2O_3$ layer from an Al electrode during the annealing process. We compared $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks through surface morphology and minority carrier lifetime after annealing processes at $450^{\circ}C$ and $850^{\circ}C$. As a result, the $Al_2O_3$/SiON stacks were observed to produce less blister phenomenon than $Al_2O_3$/SiNx:H stacks. This can be explained by the differences in the H species content. In the process of depositing SiNx film, the rich H species in $NH_3$ source are diffused to the $Al_2O_3$ film. On the other hand, less hydrogen diffusion occurs in SiON film as it contains less H species than SiNx film. This blister phenomenon leads to an increase insurface defect density. Consequently, the $Al_2O_3$/SiON stacks had a higher minority carrier lifetime than the $Al_2O_3$/SiNx:H stacks.

Effect of Doping Amounts of Al2O3 and Discharge Power on the Electrical Properties of ZnO Transparent Conducting Films (ZnO 투명 전도막의 전기적 특성에 미치는 Al2O3 의 도핑 농도 및 방전전력의 효과)

  • Park Min-Woo;Park Kang-Il;Kim Byung-Sub;Lee Se-Jong;Kwak Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.328-333
    • /
    • 2004
  • Transparent ZnO:Al conductor films for the optoelectronic devices were deposited by using the capacitively coupled DC magnetron sputtering method. The effect of Al doping concentration and discharge power on the electrical and optical properties of the films was studied. The film resistivity of $8.5${\times}$10^{-4}$ $\Omega$-cm was obtained at the discharge power of 40 W with the ZnO target doped with 2 wt% $Al_2$$_O3$. The transmittance of the 840 nm thick film was 91.7% in the visible waves. Increasing doping concentration of 3 wt% $Al_2$$O_3$ in ZnO target results in significant decrease of film resistivity, which may be due to the formation of $Al_2$$O_3$ particles in the as-deposited ZnO:Al film and the reduced ZnO grain sizes. Increasing DC power from 40 to 60 W increases deposition rate by more than 50%, but can induce high defect density in the film, resulting in higher film resistivity.

Characterization of ALD Processed Al2O3/TiO2/Al2O3 Multilayer Films for Encapsulation and Barrier of OLEDs (OLED의 Barrier와 Encapsulation을 위한 원자층 증착 기술로 공정된 Al2O3/TiO2/Al2O3 다층 필름)

  • Lee, Sayah;Song, Yoon Seog;Kim, Hyun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Thin layer of encapsulation film is required to preserve transparency yet protecting materials in it. Atomic layer deposition(ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. $Al_2O_3$ or $Al_2O_3/TiO_2/Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films. $Al_2O_3/TiO_2/Al_2O_3$ multilayer and 1.5 dyad layer of $Al_2O_3/polymer/Al_2O_3$ deposited by ALD was measured to have water vapor transmittance rate(WVTR) well below the detection limit($5.0{\times}10^{-5}g/m^2day$) of MOCON Aquatran 2 equipment.

  • PDF

Physical Properties of the Al2O3 Thin Films Deposited by Atomic Layer Deposition (ALD법으로 제조된 Al2O3 박막의 물리적 특성)

  • Kim, Jae-Bum;Kwon, Duk-Ryel;Oh, Ki-Young;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.493-498
    • /
    • 2002
  • $Al_2O_3$ is a promising gate dielectric because of its high dielectric constant, high resistivity and low leakage current. Since $OH^-$ radical in $Al_2O_3$ films deposited by ALD using TMA and $H_2O$ degrades the good properties of $Al_2O_3$, TMA and $O_3$ were used to deposite $Al_2O_3$ films and the effects of $O_3$ on the properties of the $Al_2O_3$ films were investigated. The growth rate of the $Al_2O_3$ film under the optimum condition was 0.85 $\AA$/cycle. According to the XPS analysis results the $OH^-$ concentration in the $Al_2O_3$ film deposited using $O_3$ is lower than that using $H_2O$. RBS analysis results indicate the chemical formula of the film is $Al_{2.2}O_{2.8}$. The carbon concentration in the film detected by AES is under 1 at%. SEM observation confirms that the step coverage of the $Al_2O_3$ film deposited by ALD using $O_3$ is nearly 100%.

Molecular Dynamics Simulation of Al2O3 Grain Boundaries with CaAl2Si2O8 as Interface Phase (CaAl2Si2O8를 입계상으로 가지는 Al2O3 계면의 분자동력학 시뮬레이션)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.92-98
    • /
    • 2006
  • Molecular dynamics simulations were performed to study interface structures between an $Al_2O_3$ crystalline phase and a interface phase of $CaAl_2Si_2O_8$. We calculated atomic structures and excess interface energies in systems with different thicknesses of the interface film. It was found that excess interface energies at first readily decreased with increasing film thickness, but increased for larger thicknesses of more than 2 nm. The excess energies of $Al_2O_3/CaAl_2Si_2O_8$ interfaces exhibit a minimum at a thickness around 1 nm. In this range of film thicknesses, the atoms in the interface film show a short-range ordered structure and slow diffusion rather than the random structure and rapid diffusion expected to an observation of an equilibrium thickness for interface films in ceramics.

Passivation property of Al2O3 thin film for the application of n-type crystalline Si solar cells (N-type 결정질 실리콘 태양전지 응용을 위한 Al2O3 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.106-110
    • /
    • 2014
  • The passivation property of $Al_2O_3$ thin film formed using atomic layer deposition (ALD) for the application of crystalline Si solar cells was investigated using microwave photoconductance decay (${\mu}$-PCD). After post-annealing at $400^{\circ}C$ for 5 min, $Al_2O_3$ thin film exhibited the structural stability having amorphous nature without the interfacial reaction between $Al_2O_3$ and Si. The post-annealing at $400^{\circ}C$ for 5 min led to an increase in the relative effective lifetime of $Al_2O_3$ thin film. This could be associated with the field effective passivation combined with surface passivation of textured Si. The capacitance-voltage (C-V) characteristics of the metal-oxide-semiconductor (MOS) with $Al_2O_3$ thin film post-annealed at $400^{\circ}C$ for 5 min was carried out to evaluate the negative fixed charge of $Al_2O_3$ thin film. From the relationship between flatband voltage ($V_{FB}$) and equivalent oxide thickness (EOT), which were extracted from C-V characteristics, the negative fixed charge of $Al_2O_3$ thin film was calculated to be $2.5{\times}10^{12}cm^{-2}$, of which value was applicable to the passivation layer of n-type crystalline Si solar cells.

Characteristics Evaluation of Al2O3 ALD Thin Film Exposed to Constant Temperature and Humidity Environment (항온항습 환경에 노출된 Al2O3 ALD 박막의 특성 평가)

  • Kim, Hyeun Woo;Song, Tae Min;Lee, Hyeong Jun;Jeon, Yongmin;Kwon, Jeong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.11-14
    • /
    • 2022
  • In this work, we evaluated the Al2O3 film, which was deposited by atomic layer deposition, degraded by exposure to harsh environments. The Al2O3 films deposited by atomic layer deposition have long been used as a gas diffusion barrier that satisfies barrier requirements for device reliability. To investigate the barrier and mechanical performance of the Al2O3 film with increasing temperature and relative humidity, the properties of the degraded Al2O3 film exposed to the harsh environment were evaluated using electrical calcium test and tensile test. As a result, the water vapor transmission rate of Al2O3 films stored in harsh environments has fallen to a level that is difficult to utilize as a barrier film. Through water vapor transmission rate measurements, it can be seen that the water vapor transmission rate changes can be significant, and the environment-induced degradation is fatal to the Al2O3 thin films. In addition, the surface roughness and porosity of the degraded Al2O3 are significantly increased as the environment becomes severer. the degradation of elongation is caused by the stress concentration at valleys of rough surface and pores generated by the harsh environment. Becaused the harsh envronment-induced degradation convert amorphous Al2O3 to crystalline structure, these encapsulation properties of the Al2O3 film was easily degraded.

Formation of Al2O3 Film by Activated Reactive Evaporation Method (활성화 반응 증발법에 의한 Al2O3 박막 형성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.292-296
    • /
    • 2001
  • In this work, an ultra-high vacuum activated reactive evaporation equipment was built. With reaction of Al and oxygen plasma, $Al_2O_3$ was deposited on the surface of etched Al foil. The chamber was evacuated down to $2{\times}10^{-7}$ torr initially. The Ar and $O_2$ gas introduced into the chamber to maintain $5{\times}10^{-5}$ torr during deposition. Ar gas prevents recombining of the ionized oxygen. Evaporation was maintained by electron beam evaporator continuously. Heating filament and electrode were used in order to generate plasma. The substrate bias of -300V was introduced to accelerate deposition of evaporated Al atoms. The composition and morphology of deposited $Al_2O_3$ films were analyzed by x-ray photoelectron spectroscopy(XPS) and atomic force microscopy (AFM), respectively. The Al oxide was formed on the surface of etched Al foil. According to AFM results, the surface morphology of $Al_2O_3$ film indicates uniform feature. Dielectric characteristic was measured as a function of frequency. Measured withstanding voltage and capacitance were 52V and $24{\mu}F/cm^2$, respectively. The obtained $Al_2O_3$ film shows clean condition without contaminants, which could be adapted to capacitor production.

  • PDF

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

Effect of Al2O3-ZrO2 Composite Oxide Thickness on Electrical Properties of Etched Al Foil

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2016
  • To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, $Al_2O_3$, was partly replaced by an $Al_2O_3-ZrO_2$ (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al-Zr composite layer, and an outer $Al_2O_3$ layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with $ZrO_2$ coating were 36.3% and 27.5% higher than those of samples without $ZrO_2$ coating when anodized at 100 V and 600 V, respectively.