• Title/Summary/Keyword: $Al_2O_3$ coating

Search Result 448, Processing Time 0.036 seconds

The Effect of Anodizing on the Electrical Properties of ZrO2 Coated Al Foil for High Voltage Capacitor

  • Chen, Fei;Park, Sang-Shik
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.33-40
    • /
    • 2015
  • $ZrO_2$ and Al-Zr composite oxide film was prepared by vacuum assisted sol-gel dip coating method and anodizing. $ZrO_2$ films annealed above $400^{\circ}C$ have tetragonal structure. $ZrO_2$ layers inside etch pits were successfully coated from the $ZrO_2$ sol. The double layer structures of samples were obtained after being anodized at 100 V to 600 V. From the TEM images, it was found that the outer layer was $Al_2O_3$, the inner layer was multi-layer of $ZrO_2$, Al-Zr composite oxide and Al hydrate. The capacitance of $ZrO_2$ coated foil exhibited about 28.3% higher than that of non-coating foil after being anodized at 100 V. The high capacitance of $ZrO_2$ coated foils anodized at 100 V can be attributed to the relatively high percentage of inner layer in total thickness. The electrical properties, such as withstanding voltage and leakage current of coated and non-coated Al foils showed similar values. From the results, $ZrO_2$ and Al-Zr composite oxide is promising to be used as the partial dielectric of high voltage capacitor to increase the capacitance.

Failure Mechanisms of Thermal Barrier Coatings Deposited on Hot Components in Gas Turbine Engines

  • Lee E. Y.;Kim J. H.;Chung S. I.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.106-111
    • /
    • 2005
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2-8wt.\% Y_{2}O_3$ ceramic coating during cyclic oxidation. $Al_{2}O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_{2}O_4 and Ni(Al,Cr)_{2}O_4$ during cyclic oxidation It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr,Al)_{2}O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Failure Mechanisms for Zirconia Based Thermal Barrier Coatings

  • Lee, Eui Y.;Kim, Jong H.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2$-8wt.% $Y_2O_3$ ceramic coating during cyclic oxidation. $Al_2O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_2O_4$ and $Ni(Al, Cr)_2O_4$ during cyclic oxidation. It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr, Al)_2O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Formulation and Application of UV-Cured Hard Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 하드 코팅액의 제조 및 응용에 관한 연구)

  • Park, Bo-Ram;Yoon, Hyun-Jung;Zhao, Hong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2396-2401
    • /
    • 2009
  • This study is on development of UV-cured hard coating compounds which have more improved abrasion resistance than existing UV-cured urethane-acrylic resin, to prevent a surface of a widely used PVC tile as a constructive material from being scratched. To make a high abrasion resistant hard coating solution compared to UV-cured urethane-acrylic resin which has no abrasion resistance and been used for PVC tiles, we added powder substances of different abrasion resistant level, $Al_2O_3$(Al-160SG-3), $Al(OH)_3$(SH-8W), $SiO_2$(KS-5000), etc., to the resin, changing their contents from 10% to 30% against quantities of resin, and compounded it using Ring-Mill. After coating PVC tiles with the hard coating solution using bar-coating method that can adjust a thickness, we estimated some surface properties-abrasion resistance, pencil hardness, adhesive power, thickness of coating, and so on. As a result, a hard coating solution added 30% $Al_2O_3$ powder to the resin had the finest surface properties-the first grade in abrasion resistance, H in pencil hardness, 100% in adhesive power, and a hard coating solution which showed excellent solidity and abrasion resistance has smaller particle size, higher powder content, and thicker coating thickness.

A Study on the Improvement of Properties of Sprayed $Al_2O_3$ Ceramic Coating Layer. ($Al_2O_3$세라믹 용사피막의 특성개선에 관한 연구)

  • 김정일;이주원;최영국;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • Thermal spraying is one of the most common surface coating techniques to be used for many applications and flame spraying covers a wide range of different materials which can be coated onto various substrates. The purpose of this study is to investigate the effects of mixed ratio in composite coatings on the mechanical and anti-corrosion properties. The five different types of composite coatings were made with $Al_2O_3$ ceramic and Ni-alloy powder on the mild steel substrate by flame spraying method. The mechanical properties such as microhardness, adhesive strength and erosion resistance and corrosion resistance were tested for the sprayed coating specimens. The results obtained are summarized as follows; 1. The composite coating layers greatly improve the microstructure, erosion resistance and adhesive strength by increasing the content of Ni-Al alloy. 2. Microhardness of the compsite coating layer is decreased by increasing the content of Ni-Al alloy. 3. The anti-corrosion properties is considerably improved by increasing the compsite rate of Ni-Al alloy.

  • PDF

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

Effect of Ultrasonic Process of Electroless Ni-P-Al2O3 Composite Coatings

  • Yoon, Jin-Doo;Koo, Bon-Heun;Hwang, Hwan-Il;Seo, Sun-Kyo;Park, Jong-Kyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.315-323
    • /
    • 2021
  • In general, surface treatments of electroless Ni-P coating are extensively applied in the industry due to their excellent properties for considerable wear resistance, hardness, corrosion resistance. This study aims to determine the effect of ultrasonic conditions on the morphology, alumina content, roughness, hardness, and corrosion resistance of electroless Ni-P-Al2O3 composite coatings. The characteristics were analyzed by Energy-dispersive X-ray spectroscopy (EDX), x-ray diffractions (XRD), and atomic force microscopy (AFM), etc. In this study, the effect of ultrasonic condition uniformly distributed alumina within Ni-P solution resulting in a smoother surface, lower surface roughness. Furthermore, the corrosion resistance behavior of the coating was analyzed using tafel polarization curves in a 3.5 wt.% NaCl solution at 25 ℃. Under ultrasonic, Al2O3 content in Ni-P composite solution increased from 0.5 to 5.0 g/L, Al2O3 content at 3.0 g/L was showed a significantly enhanced corrosion resistance. These results suggested that ultrasonic condition was an effective method to improve the properties of the composite coating.

Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution (뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성)

  • Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

The Effect of Particle Size of Coating Powder and Coating Temperature on the Thickness of Coating Layer Formed on Metal Surface (Calorizing 처리에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅층의 두께에 미치는 영향)

  • Ha, Jin-Wook;Park, Hai-Woong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1061-1065
    • /
    • 1999
  • The effect of particle size of coating powder and coating temperature on the thickness of coating layer formed on metal surface was studied by using XRD, SEM and EDXS. Coating powder was separated according to particle size by 3 steps and coating temperatures were varied from $950^{\circ}C$ to $980^{\circ}C$. Calorizing carried out at air and Ar conditions for 5 hrs, respectively. XRD result show that $Al_2O_3$ and AlN were formed during calorizing at air condition. The thickness and Al content of coating layer increased as the particle size of coating powder decreased and coating temperature increased.

  • PDF

The Cathodoluminance Properties of ${Y_2}{SiO_5}:Ce$ Blue Phosphor with Surface Coatings (${Y_2}{SiO_5}:Ce$ 청색 형광체의 표면 코팅에 따른 음극선 발광특성)

  • Kim, Seong-U;Lee, Im-Ryeol
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.558-563
    • /
    • 2000
  • $Y_2SiO_5:Ce$ phosphor was coated with $In_2O_3$, $Al_2O_3$ and $SiO_2$ and then their cathodoluminance(CL)proper-ties required in field emission display were investigated. It was found that luminance efficiency and aging p개perty of $Y_2SiO_5:Ce$ phosphor was decreased with $In_2O_3$coating. For the case of coating, the luminance intensity was in blue phosphor was dramatically increased with $SiO_2$ coating. And also the aging property of $Y_2SiO_5:Ce$ Phosphor coated with $SiO_2$ was significantly improved compared to non-coated sample.

  • PDF