• Title/Summary/Keyword: $Al_2O_3$ addition

Search Result 772, Processing Time 0.027 seconds

Effect of Al2O3 Addition and WO3 Modification on Catalytic Activity of NiO/Al2O3-TiO2/WO3 for Ethylene Dimerization

  • Pae, Young-Il;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1763-1770
    • /
    • 2007
  • Strong solid acid catalysts, NiO/Al2O3-TiO2/WO3 for ethylene dimerization were prepared by the addition of Al2O3 and the modification with WO3. The acid sites and acid strength were increased by the inductive effect of WO3 species bonded to the surface of catalysts. The larger the dispersed WO3 amount, the higher both the acidity and catalytic activity for ethylene dimerization. The addition of Al2O3 to TiO2 up to 5 mol% enhanced acidity and catalytic activity gradually due to the interaction between Al2O3 and TiO2 and consequent formation of Al-O-Ti bond.

Fabrication of $Al_2O_3$/SiC Hybrid-Composite ($Al_2O_3$/SiC Hybrid-Composite의 제조)

  • Lee, Su-Yeong;Im, Gyeong-Ho;Jeon, Byeong-Se
    • 연구논문집
    • /
    • s.26
    • /
    • pp.103-112
    • /
    • 1996
  • $Al_2O_3/SiC$ Hybrid-Composite has been fabricated by conventional powder process. The addition of $\alpha-Al_2O_3$ as seed particles in the transformation of $\gamma-Al_2O_3 to $\alpha-Al_2O_3$ provided a homogeneity of the microstructure, resulting in increase of mechanical properties. The grain growth of $Al_2O_3$ are significantly surpressed by the addition of nano-sized. SiC particles, increasing in fracture strength. The addition of SiC plates to $Al_2O_3$ nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC plates with nitrides such as BN and /SiC$Si_3N_4$ enhanced fracture toughness much more than uncoated SiC plates by inducing crack deflection.

  • PDF

Fabrication and Physical Properties of ZrO2(m)-Al2O3ZrO2(t)-Al2O3 Structural Ceramics (ZrO2(m)-Al2O3ZrO2(t)-Al2O3 세라믹스의 제조와 물리적 특성)

  • Park, Jae-Sung;Park, Ju-Tae;Park, Jung-Rang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.140-148
    • /
    • 2010
  • The effects of the addition of either monoclinic $ZrO_2(ZrO_2(m))$ or tetragonal $ZrO_2(ZrO_2(t))$ containing 5.35[wt%] $Y_2O_3$ on the physical properties and electrical conductivity of $Al_2O_3$ were investigated. The addition of $ZrO_2$(m) and $ZrO_2$(t) increased sintered density of $Al_2O_3$. The Vickers hardness also increased as addition of $ZrO_2$(t) increased going through a maximum at 20[wt%] and the hardness of the specimens was found to be dependent on the sintered density. The addition of $ZrO_2$(t) improved the hardness of $Al_2O_3-ZrO_2$ systems and the $ZrO_2$(m) addition showed the better effect on the thermal shock property of $Al_2O_3-ZrO_2$ systems than that of the $ZrO_2$(t) addition. Above 15[wt%] addition of $ZrO_2$(t), the electrical conductivity is gradually increased with increasing applied voltage but not effects by addition of $ZrO_2$(m).

Effect of CuO and $Al_2O_3$ Addition on the Electrical Conductivity of ZnO (ZnO의 전기전도도에 미치는 CuO 및 $Al_2O_3$의 첨가영향)

  • 전석택;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.106-112
    • /
    • 1995
  • In order to examine the effect of CuO and Al2O3 addition on the electrical conductivity of ZnO, both Al2O3 (0, 1, 2, 5, 10at.%) and CuO (1, 5at.%) were added to ZnO. Al2O3 addition (~2at.% Al) increased the total electrical conductivity of ZnO which was already decreased by CuO doping effect Above solid solubility of Al (~2at.%), ZnAl2O4 formed and the total electrical conductivity decreased due to the decrease of sintered density. Impedance measurements were used to know the reason and degree of contribution of three resistive elements, ZnO grain, ZnO/CuO, and ZnO/ZnO grain boundaries, to the total electrical conductivity changed.

  • PDF

Sintering Properties of Renewed ${Al_2}{O_3}$Ceramics with Particle Size and Addition Amount of Recycling Powder (재활용원료의 첨가량과 입경에 따른 재생 ${Al_2}{O_3}$ 세라믹스의 소결 특성)

  • 신대용;한상목;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1123-1131
    • /
    • 2001
  • The sintering behaviors of the renewed $Al_2$O$_3$ceramics were investigated as functions of the addition amount and particle size of recycling $Al_2$O$_3$powder, such as crushed powder of structural $Al_2$O$_3$ceramics and waste $Al_2$O$_3$adsorbent, were investigated. Pure $Al_2$O$_3$sample was fabricated by sintered at 1,$650^{\circ}C$ for 5h and it was crushed into powder (-40${\mu}{\textrm}{m}$and +40${\mu}{\textrm}{m}$ in particle size) by thermal shock treatment and crushing. Then, 10~50wt% of crushed $Al_2$O$_3$powder and waste $Al_2$O$_3$adsorbent were mixed with pure $Al_2$O$_3$powder and were subjected to re-sintering to renewed $Al_2$O$_3$sample. The density and the 3-point bending strength increased with increasing the sintering temperature without regard to the addition amount and particle size of recycling $Al_2$O$_3$powder, and that of the samples at the same sintering temperature decreased with increasing the addition amount and particle size of recycling $Al_2$O$_3$powder. Samples over 200 Mpa of 3-point bending strength were obtained by mixing ~30wt% of crushed $Al_2$O$_3$powder(-40${\mu}{\textrm}{m}$), ~20wt% of crushed $Al_2$O$_3$powder (+40${\mu}{\textrm}{m}$) and 10wt% of waste $Al_2$O$_3$adsorbent. 5~20wt% of waste glass powder containing renewed $Al_2$O$_3$samples for densification were fabricated by sintered at 1200~1$650^{\circ}C$ for 5h. The temperature of maximum density and 3-point bending strength decreased with increasing the addition amount of waste glass powder, however, these samples at above 140$0^{\circ}C$ showed lower density and bending strength than renewed $Al_2$O$_3$samples. The addition of waste glass powder did not improved the densification of renewed $Al_2$O$_3$sample.

  • PDF

Effect of $SiO_2$ and $Al_2O_3$ on Characteristics of Yttria-Stabilized Zirconia Ceramics (아트리아 안정화 지르토니아 소결체의 특성에 $SiO_2$$Al_2O_3$ 가 미치는 영향)

  • 손정덕;최시영;조상희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.886-894
    • /
    • 1990
  • Sinterbility, microstructure, mechenical and electrical properties of yttriastabilized zirkconiz (92 mole % ZrO2 + 8 mole % Y2O3) doped with 0.5 mole % SiO2 and 0-2.O mole% Al2O3 were studied as a functin of Al2O3 addition. Sintered density increased with increasing Al2O3 addition up to o.5 mole%but decreased up to 1.0mole% Al2O3. Vickers hardness is proportional to sintered density. The specimen added 0.5mole% Al2O3 and 0.5mole% SiO2 exhibited a maximum conductivity. And the specimen added 0.5 mole % Al2O3 and 0.5 mole% SiO2 was measured a maximum electromotive force for a characteristics of oxyzen partial pressure.

  • PDF

Low Temperature Sintering and Dielectric Properties of CaCO3-Al2O3 Mixture and Compound with CAS-based Glass (CAS계 유리가 첨가된 CaCO3-Al2O3 혼합물 및 화합물의 저온 소결 및 유전 특성)

  • Yoon, Sang-Ok;Kim, Myung-Soo;Kim, Kwan-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.397-404
    • /
    • 2009
  • Effects of ceramic filler types and dose on the low temperature sintering and dielectric properties of ceramic/$CaO-Al_2O_3-SiO_2$ (CAS) glass composites were investigated. All of the specimens were sintered at $850{\sim}900^{\circ}C$ for 2 h, which conditions are required by the low-temperature co-firing ceramic (LTCC) technology. Ceramic fillers of $CaCO_3$, $Al_2O_3$, $CaCO_3-Al_2O_3$ mixture, and $CaCO_3-Al_2O_3$ compound ($CaAl_2O_4$), respectively, were used. The addition of $Al_2O_3$ yielded the crystalline phase of alumina, which was associated with the inhibition of sintering, while, $CaCO_3$ resulted in no apparent crystalline phase but the swelling was significant. The additions of $CaCO_3-Al_2O_3$ mixture and $CaAl_2O_4$, respectively, yielded the crystalline phases of alumina and anorthite, and the sintering properties of both composites increased with the increase of filler addition and the sintering temperature. In addition, the $CaAl_2O_4$/CAS glass composite, sintered at $900^{\circ}C$, demonstrated good microwave dielectric properties. In overall, all the investigated fillers of 10 wt% addition, except $CaCO_3$, yielded reasonable sintering (relative density, over 93 %) and low dielectric constant (less than 5.5), demonstrating the feasibility of the investigated composites for the application of the LTCC substrate materials.

Properties of the System $ZrO_2$+3m/o $Y_2O_3$ Powder Prepared by Co-Precipitation Method(II) Effects of $Al_2O3$$Cr_2O_3$Addition on Mechanical Properties and Microstructures of Y-TZP (공침법으로 제조한 $ZrO_2$+3m/o $Y_2O_3$계 분체의 특성(II) : Y-TZP의 기계적 성질 및 미세구조에 미치는 $Al_2O3$$Cr_2O_3$의 첨가영향)

  • 이홍림;최동근;홍기곤;신현곤
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.465-472
    • /
    • 1990
  • The effects of Al2O3 and Cr2O3 addition on the mechanical properties and microstructures of Y-TZP ceramics obtained by co-precipitation method of ZrO2+3m/o Y2O3, following pressureless sintering at 150$0^{\circ}C$ for 2h were investigated. The addition of Al2O3 and Cr2O3 improved the Y-TZP sinterability and the Al2O3 addition showed the better effect on Y-TZP sintering than that of the Cr2O3 addition. The density and microstructure had the better effect on the bending strength of specimen more than stressinduced phase transformation (SIPT) of ZrO2 from tetragonal to monoclinic phase. The hardness of the specimens was found to be depend on the relative density and the fracture toughness of Y-TZP was found to rely on the amount of SIPT. The grian size of Cr2O3-doped Y-TZP was observed to be relatively smaller and had a narrower distribution than that of Al2O3-doped Y-TZP. If decomposition reaction of Cr2O3 can be controlled at high temperatures, it is anticipated that the mechanical properties of Y-TZP can be much improved by the Cr2O3 addition.

  • PDF

Effects of Y2O3 Addition on Densification and Thermal Conductivity of AlN Ceramics During Spark Plasma Sintering (Y2O3 첨가가 AlN 세라믹스의 방전 플라즈마 소결 거동 및 열전도도에 미치는 영향)

  • Chae, Jae-Hong;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kyoung-Hun;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.827-831
    • /
    • 2008
  • Spark plasma sintering (SPS) of AlN ceramics were carried out with ${Y_2}{O_3}$ as sintering additive at a sintering temperature $1,550{\sim}1,700^{\circ}C$. The effect of ${Y_2}{O_3}$ addition on sintering behavior and thermal conductivity of AlN ceramics was studied. ${Y_2}{O_3}$ added AlN showed higher densification rate than pure AlN noticeably, but the formation of yttrium aluminates phases by the solid-state reaction of ${Y_2}{O_3}$ and ${Al_2}{O_3}$ existed on AlN surface could delay the densification during the sintering process. The thermal conductivity of AlN specimens was promoted by the addition of ${Y_2}{O_3}$ up to 3 wt% in spite of the formation of YAG secondary phase in AlN grain boundaries because ${Y_2}{O_3}$ addition could reduced the oxygen contents in AlN lattice which is primary factor of thermal conductivity. However, the thermal conductivity rather decreased over 3 wt% addition because an immoderate formation of YAG phases in grain boundary could decrease thermal conductivity by a phonon scattering surpassing the contribution of ${Y_2}{O_3}$ addition.

The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite ($Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향)

  • 이수영;임경호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF