• Title/Summary/Keyword: $Al_2(MoO_4)_3$

Search Result 103, Processing Time 0.022 seconds

Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea (광양 폐금광 수계에 형성된 철수산화물에 대한 광물학적 및 지구화학적 특성)

  • Park, Cheon-Young;Jeoung, Yeon-Joong;Kim, Seoung-Ku
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.208-222
    • /
    • 2001
  • Geochemical investigations on suspended amorphous iron oxide material from the Kwangyang gold mine and its surrounding area, Cheonnam, Korea have been carried out. The sediments samples were collected from 11 location along Kwangyang mine area and were air dried and sieved to -80 mesh. These samples consist mainly of iron, silicon and alumina. The Fe$_2$O$_3$ contents ranges from 17.9 wt.% to 72.3 wt.%. The content of Fe$_2$O$_3$ increase with decreasing Si, Al, Mg, Na, K, Mn, and Ti, whereas the contents of Te, Au, Ga, Bi, Cd, Hg, Sb, and Se increase in the amorphous stream sediments. Amorphous stream sediments have been severely enriched for As (up to 54.9 ppm), Bi (up to 3.77 ppm), Cd (up to 3.65 ppm), Hg (up to 64 ppm), Sb (up to 10.1 ppm), Cu (up to 37.1 ppm), Mo (up to 8.86 ppm), Pb (up to 9.45 ppm) and Zn (up to 29.7 ppm). At the upstream site, the Au content (up to 4.4 ppm) in the amorphous stream sediments are relatively high but those contents decrease with distance of mine location. The content of Ag (up to 0.24 ppm) were low in upstream site but those contents increase significantly in the downstream sites. The X-ray diffraction patterns of the samples have virtually no sharp and discrete peaks, indicating that some samples are amorphous or poorly-ordered. The quartz, goethite, kaolinite and illite were associated in amorphous stream sediments. The infrared spectra for amorphous stream sediments show major absorption bands due to OH stretching, adsorbed molecular water, sulfate and Fe-O stretching, respectively.

  • PDF

Chemical Speciations of Elements in the Fe-Mn Crusts by Sequential Extraction (단계별 추출법을 이용한 망간각 구성 원소의 존재 형태)

  • Kim, Jong-Uk;Moon, Jai-Woon;Chi, Sang-Bum;Ko, Young-Tak;Lee, Hyun-Bok
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 2004
  • Sequential extraction was carried out on twenty two subsamples of three ferromanganese crusts from three seamounts (Lemkein, Lomilik, and Litakpooki) near the Marshall Islands in the western Pacific. The extraction was designed to fractionate Fe-Mn crust forming elements into low defined groups: (1) exchangeable and carbornate, (2) Mn-oxide, (3) Fe-oxyhyd.oxide, and (4) residual fraction. X-ray diffraction result shows that target material were well removed by each extraction step except for CFA in phosphatized crusts generation. According to chemical analysis of each leachate, most of elements in the Fe-Mn crusts are bound with two major phases. Mn, Ba, Co, Ni, Zn, (Fe, Sr, Cu, and V) are strongly bounded with Mn-oxide $({\delta}-MnO_2)$ phase, whereas Fe, Ti, Zr, Mo, Pb, Al, Cu,(V, P, and Zn) show chemical affinity with Fe-oxyhydroxide phase. This result indicates that significant amount of Al, Ti, and Zr can not be explained by detrital origin. Ca, Mg, K, and Sr mainly occur as exchangeable elements and/or carbonate phase. Outermost layer 1 and inner layer 2 which are both young crusts generations are similar in chemical speciations of elements. However, some of Fe-oxyhydroxide bounded elements (Pb, Y, Mo, Ba, Al, and V) in phosphatized innermost layer 3 are released during phosphatization and incorporated into phosphate (Pb, Y, Mo, and Ba) or Mn-oxide phase (Al and V). Our sequential extraction results reveal that chemical speciations of elements in the hydrogenetic crusts are more or less different from interelemental relationship calculated by statistical method based on bulk chemistry.

The Effect of Promotor and Reaction Condition for FT Oil Synthesis over 12wt% Co-based Catalyst (12wt% Co 담지 촉매에서 합성오일 제조시 조촉매 효과 및 반응조건 영향 분석)

  • Park, Yonhee;Lee, Jiyoon;Jung, Jongtae;Lee, Jongyeol;Cho, Wonjun;Baek, Youngsoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • The synthesis of Fischer-Tropsch oil is the catalytic hydrogenation of CO to give a range of products, which can be used for the production of high-quality diesel fuel, gasoline and linear chemicals. Our cobalt based catalyst was prepared Co/alumina, silica and titania by the incipient wet impregnation of the nitrates of cobalt and promoter with supports. Cobalt catalysts was calcined at $350^{\circ}C$ before being loaded into the FT reactors. After the reduction of catalyst has been carried out under $450^{\circ}C$ for 24hrs, FT reaction of the catalyst has been carried out at GHSV of 4,000/hr under $200^{\circ}C$ and 20atm. From these test results, we have obtained the results as following ; in case of 12wt% Co-supported $Al_2O_3$, $SiO_2$ and $TiO_2$ catalysts, maximum activities of the catalysts were appeared at the promoters of Mn, Mo and Ce respectively. The activity of 12wt% $Co/Al_2O_3$ added a Mn promoter was about 3 times as high as that of 12wt% $Co/Al_2O_3$ catalyst without promoters. When it has been the experiment at the range of reaction temperature of $200{\sim}220^{\circ}C$ and GHSV of 1,546~5,000/hr, the results have shown generally increasing the activities with the increase of reaction temperature and GHSV.

Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering (스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성)

  • Woo, Kee Do;Kim, Sang Mi;Kim, Dong Gun;Kim, Dae Young;Kang, Dong Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Investigation of Microstructure and Ionic Conductivity of Li1.5Al0.5Ti1.5(PO4)3 Ceramic Solid Electrolytes by B2O3 Incorporation (Li1.5Al0.5Ti1.5(PO4)3 세라믹 고체전해질의 B2O3 첨가에 따른 미세구조 및 이온전도도에 대한 연구)

  • Min-Jae Kwon;Hyeon Il Han;Seulgi Shin;Sang-Mo Koo;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.627-632
    • /
    • 2023
  • Lithium-ion batteries are widely used in various applications, including electric vehicles and portable electronics, due to their high energy density and long cycle life. The performance of lithium-ion batteries can be improved by using solid electrolytes, in terms of higher safety, stability, and energy density. Li1.5Al0.5Ti1.5(PO4)3 (LATP) is a promising solid electrolyte for all-solid-state lithium batteries due to its high ionic conductivity and excellent stability. However, the ionic conductivity of LATP needs to be improved for commercializing all-solid-state lithium battery systems. In this study, we investigate the microstructures and ionic conductivities of LATP by incorporating B2O3 glass ceramics. The smaller grain size and narrow size distribution were obtained after the introduction of B2O3 in LATP, which is attributed to the B2O3 glass on grain boundaries of LATP. Moreover, higher ionic conductivity can be obtained after B2O3 incorporation, where the optimal composition is 0.1 wt% B2O3 incorporated LATP and the ionic conductivity reaches 8.8×10-5 S/cm, more than 3 times higher value than pristine LATP. More research could be followed for having higher ionic conductivity and density by optimizing the processing conditions. This facile approach for establishing higher ionic conductivity in LATP solid electrolytes could accelerate the commercialization of all-solid-state lithium batteries.

Distribution Characteristics of Gold in the Volcanic Rocks, Korea (국내에 분포하는 화산암류중 금의 분포특징에 관한 연구)

  • Yoon, Chung-Han;Oh, Keun-Chang
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 1996
  • One hundred of thirty volcanic rocks col1ected from the Jeju island, Jeongog, Guryongpo and other areas were analyzed for major elements and trace elements with Au by inductively coupled argon plasma and graphite furnace atomic absorptiom spectrometry. The Au content is the highest values (0.2~43.4 ppb, average; 10.34 ppb) from the Jeju island volcanic rocks and the lowest (0.5~11.0 ppb, average; 1.23 ppb) from the Guryongpo volcanic area. The content of Au tends to be higher in the Quarternary volcanic rocks than Tertiary or Cretaceous volcanic rocks. The Au content of the calc alkali volcanic rocks tends to increase from mafic to felsic volcanic rocks, but that of the alkalic volcanic rocks tends to increase from felsic to mafic volcanic rocks. The Au content of the volcanic rocks collected from the Jeju island shows the highest values in the feldspar olivine basalts. Elements or oxides which have positive or negative correlations with Au are Ag, Mo, Rb, V, Y, $K_2O$, MgO and $SiO_2$, but other elements analyzed are not shown correlations with Au. It has a tendency to show that samples from the Jeju with 5 ppb gold and more are plotted in the non-Dupal area and those with less than 5 ppb gold in the Dupal area, while those from the Jeongog with 5 ppb gold and more are plotted in the Dupal area and those with less than 5 ppb gold in the non-Dupal area, in the Ba/Nb-La/Nb, Zr/Nb-Ba/Nb diagrams. It shows that samples from the Jeju and Guryongpo with high gold content are plotted in the within-plate, while those with low gold content are plotted in the arc-related area, and those from the Jeongog are scattered in the $TiO_2-Al_2O_3$, $Zr/A1_2O_3-TiO_2/Al_2O_3$ diagrams.

  • PDF

Multi-layered Gap Measurement on In-Vessel Cerium Retention Using Ultrasonic Wave Reflective Pattern Analysis and Frequency Diversity Signal Processing (초음파 반사 패턴과 주파수 대역 분할 신호처리를 이용한 다층구조인 노내 간극 측정)

  • Koo, Kil-Mo;Sim, Cheul-Mu;Kim, Jong-Hwan;Kim, Sang-Baik;Kim, Hee-Dong;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.314-321
    • /
    • 2000
  • A gap between a $Al_2O_3/Fe$ thermite and lower head vessel is formed in the lower-plenum arrested vessel attack(LAVA) experiment which is the 1st phase study of simulation of naturally arrested vessel attack in vessel(SONATA-IV). The gap measurement using a conventional ultrasonic method would be lack of a reliability due to the structure complexity and the metallurgical grain size change of the lower head HAZ occurred by a thermite $Al_2O_3/Fe$ melt or a $Al_2O_3$ melt at $2300^{\circ}C$. The grain echoes having false signals and lower S/N ratio signals are detected due to a multiple scattering, a mode conversion and an attenuation of a ultrasonic resulted from at the interface of increased grain size zone. In this test, the signals pattern was classified to understand the behavior of the ultrasonic in a multi-layer specimen of solid-liquid-solid of assuming that the thermite and the lower head vessel is immersed. The polarity threshold algorithm of frequency diversity gives us the enhancement about 6dB of the ratio S/N.

  • PDF

Synthesis and reactivity over molybdenum carbide crystallites

  • Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.74-79
    • /
    • 2010
  • The synthesis and reactivities of molybdenum carbide crystallites were examined in this study. Especially, the effect of synthesis conditions were scrutinized on the preparation of molybdenum carbide crystallites. In order to perform this purpose, various characterization techniques such as BET surface area and oxygen uptake measurements were employed for the synthesized molybdenum carbide crystallites. First of all, the molybdenum carbide crystallites were synthesized using molybdenum oxide crystallites and methane gas or methane-hydrogen mixture. The experimental results showed that BET surface areas ranged from $7.4m^2/g$ to $31m^2/g$ and oxygen uptake values varied from $8.1{\mu}mol/g$ to $24.3{\mu}mol/g$. The Mo compounds were found to be active for ammonia decomposition reaction. Even though there are some molybdenum carbide crystallites that were exceeded by Pt/$Al_2O_3$ crystallite, the steady state reactivities for other molybdenum carbide crystallites were comparable to or even higher than that determined for the Pt/$Al_2O_3$ crystallite. These results implied that molybdenum carbide crystallites could be one of the promising crystallites that might be substitutes for Pt-like noble metal crystallites in the petroleum processes.

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

Reactions of n-Butane of Pd-Zeolite Y Catalyst (Pd-Zeolite Y 촉매에서의 n-Butane의 반응)

  • Chon Hakze;Oh Seung Mo
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.161-164
    • /
    • 1979
  • The effect of acidity and the metal surface area of the Pd loaded zeolite catalysts; prepared from $Ca^{2+}-,\;La^{3+}-,\;NH_4^+-$exchanged Y and dealuminated HY was studied for the reaction of n-butane. The amount of strong acid site determined by the temperature programmed desorption of ammonia increased in the order NaY < CaY < LaY. Total amount of acid site decreased with increasing degree of dealumination, but the portion of strong acid site increased with increasing $SiO_2/Al_2O_3$ ratio. The effective metal surface area determined by the CO adsorption technique was large for those zeolite catalysts having strong acidity. It was found that conversion of n-butane was strongly dependent on the acidity and the effective metal surface area of the catalysts. The fact that the conversion of n-butane was proportional to the effective metal surface area suggests that the dehydrogenation by metallic component is the primary step in the reaction of n-butane.

  • PDF