• Title/Summary/Keyword: $Al_{2}O_{3}$ addition

Search Result 772, Processing Time 0.03 seconds

α-case Interfacial Reaction Behavior of Al2O3 Mold Containing Interstitial and Substitutional Compounds for Titanium Investment Casting (침입형 및 치환형 화합물을 함유한 Ti 정밀주조용 Al2O3 주형의 α-case 계면반응 거동)

  • Choi, Bong-Jae;Lee, Seul;Kim, Young-Jig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.577-582
    • /
    • 2011
  • The newly developed ${\alpha}-case$ controlled mold material for Ti investment castings was suggested in this research. The $Al_2O_3$ mold containing interstitial $TiO_2$ and substitutional $Ti_3Al$ was manufactured by the reaction between $Al_2O_3$ and Ti. It is obvious that as the $TiO_2$ and $Ti_3Al$ content in the mold surface were increased, the depth of the interfacial reaction was significantly reduced. In addition, substitutional $Ti_5Si_3$ in the mold surface owing to the reaction between Ti and $SiO_2$ from the binder was effective for ${\alpha}-case$ reduction. Therefore, the ${\alpha}-case$ reduction was accomplished by the diffusion barrier effect of interstitial $TiO_2$, substitutional $Ti_3Al$ and $Ti_5Si_3$.

The Effect of Al-powder as an additive on the Sintering of $Al_2O_3$ (II. In air,1600~180$0^{\circ}C$) (첨가된 알루미늄 분말의 산화가 알루미나 소결에 미치는 영향(II. 공지궁 1,600~1,80$0^{\circ}C$에서))

  • 박정현;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.3
    • /
    • pp.259-265
    • /
    • 1984
  • As the effect of Al-powder as an additive on the sintering of $Al_2O_3$ was found satisfacotry in the range of 1350-155$0^{\circ}C$ this experiment was carried out at higher temperature(1600-180$0^{\circ}C$) at which the commerical $Al_2O_3$ body is sintered. Some phsical properties were measured and the micostructures of the specimens were observed by SEM. Although some measured physical properties of the specimens were improved through the addition of Al powder to $Al_3O_2$ powder the systematic changes in microsturces of the specmens could not be observed by SEM.

  • PDF

Redox Characteristics of $MO/Al_2O_3-ZrO_2$ [M=Ni and Cu] Mixed Metal Oxides ($MO/Al_2O_3-ZrO_2$ [M=Ni 및 Cu] 혼합 금속 산화물의 환원-산화 특성)

  • Ryu, Jae-Chun;Kim, Young-Ho;Park, Chu-Sik;Hwang, Gab-Jin;Kim, Jong-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • [ $MO/Al_2O_3-ZrO_2$ ](M=Ni and Cu) mixed metal oxides were prepared using sol-gel method in order to investigate the applicability to the 2-step thermo-chemical water splitting process and their redox behaviors were studied by temperature programmed reaction(TPR) from room temperature to 900$^{\circ}C$ under 5% $H_2$/Ar for the reduction and $H_2O$/Ar for the oxidation, respectively. From the results, peaks of the reduction and the oxidation on temperature were shifted with the change of crystalline phases due to the addition of $Al_2O_3$ and $ZrO_2$. The intensities of the peaks were also increased with the increase of contents of NiO or CuO that could be considered as active species. In addition, based on the observation of SEM images before and after the redox test, it seemed that $Al_2O_3-ZrO_2$ added prevented high temperature sintering of active metal components such as Ni (or Cu) on the surface and played a role of dispersing the active species homogeneously in solid solution of mixed oxides.

Influence of Ionic Liquid as a Template on Preparation of Porous η-Al2O3 to DME Synthesis from Methanol

  • Yoo, Kye-Sang;Lee, Se-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1628-1632
    • /
    • 2010
  • Porous ${\eta}-Al_2O_3$ was synthesized by modified sol-gel method using ionic liquid as a templating material. The addition of ionic liquid assisted to increase the surface area of alumina. However, the acidity of aluminas prepared with ionic liquids was hardly affected regardless the change of its structural properties. Among the ionic liquids used in this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][$PF_6$]) was the most effective ionic liquid to produce porous ${\eta}-Al_2O_3$ particles. The catalytic performance of these aluminas has been investigated in dehydration of methanol to produce dimethyl ether. The alumina prepared with [Bmim][$PF_6$] outperformed the other aluminas except ${\eta}-Al_2O_3$ without modification in this reaction.

Effect of $Al_2O_3$ and $Fe_2O_3$ Tribological Properties of Reaction Bonded SiC (반응 소결 SiC 소결체의 마찰마모특성에 미치는 첨가제 $Al_2O_3$$Fe_2O_3$ 의 영향)

  • 백용혁;박홍균
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1069-1075
    • /
    • 1994
  • When ceramics are used as the parts of an engine and a machine, the tribological properties are very important. For the preparation of the resistance material for wear applications by the method of Reaction-Bonded Sintering, metal silicon and carbon black are mixed up into SiC powder, and Al2O3 and Fe2O3 are put as an additive. As the general properties, the bending strength and water absortion are measured in the normal temperature and the phase changies are investigated with XRD. The property of the resistance for wear applications is measured with the amount of friction and wear, friction coefficient and maximum asperties. And, the surface of wear is observed with SEM. With the results of this study, the optimal mol ratio of Si : C and the suitable quantity of the mixture of SiC are 7 : 3 and 40 wt%, respectively. In the case of the addition of Al2O3 (2 wt%), the resistance for friction and wear applications is prominent. The bending strength showed the highest peak when Al2O3 (4 wt%) and Fe2O3 (4 wt%) were added. The properties of friction and wear were related with the propagation velocity of crack rather than the bending strength.

  • PDF

Effect of Adding SiO2 and Al2O3 on Mechanical Properties of Zircon (SiO2와 Al2O3 첨가가 지르콘의 기계적 특성에 미치는 영향)

  • Cho, Bum-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.220-224
    • /
    • 2011
  • Zircon has excellent thermal, chemical, and mechanical properties, but it is hard to make a dense sintered product because of dissociation during the sintering process. This study analyzes how the addition of $SiO_2$ and $Al_2O_3$ affects the mechanical properties of sintered zircon, particularly in regards to reducing the thermal dissociation and improving the mechanical properties of $ZrSiO_4$. Zircon specimens containing different amounts of $SiO_2$ and $Al_2O_3$ were prepared and sintered to observe how the mechanical properties of $ZrSiO_4$ changed according to the differing amount of $SiO_2$ and $Al_2O_3$. The $ZrSiO_4$ that was used for the starting material was ground by ball mill to an average particle size of 3 ${\mu}m$. The $SiO_2$ and $Al_2O_3$ that was used for additives were ground to an average particle size of 3 ${\mu}m$ and 0.5 ${\mu}m$, respectively. Adding $SiO_2$ resulted in transformation in the liquid phase at high temperatures, which had little effect on suppressing the thermal dissociation but enhanced the mechanical properties of $ZrSiO_4$. When $Al_2O_3$ was added, the mechanical properties of $ZrSiO_4$ decreased due to the formation of pores and abnormal grains in the microstructure of the sintered zircon.

The Performance of NI/$MgAl_2O_4$ Coated Metal Monolith in Natural Gas Steam Reforming for Hydrogen Production (NI/$MgAl_2O_4$코팅된 금속 모노리스 촉매의 수소 생산을 위한 천연가스 수증기 개질 반응특성에 관한 연구)

  • Choi, Eun-Jeong;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.500-506
    • /
    • 2010
  • The metal monolith catalyst coated with 15wt% Ni/$MgAl_2O_4$ is applied to the natural gas steam reforming for hydrogen production. To address the improvement of adherence between metal monolith and catalyst coating layer, the pre-calcination temperature as well as the coating conditions of $Al_2O_3$ sol are optimized. When the Fe-Cr alloy monolith is pre-calcined at $900^{\circ}C$ for 6 h, $Al_2O_3$ layer was formed uniformly on the entire surface of the metal substrate. It is seen that the formation of $Al_2O_3$ layer on the monolith surface is essential for the uniform coating of $Al_2O_3$ sol onto the monolith substrate. The monolith catalyst coated with 10wt% $Al_2O_3$ sol shows high $CH_4$ conversion and good thermal stability as compared with the monolith catalyst without $Al_2O_3$ sol coating under severe reaction conditions with high GHSV of 30,000 $h^{-1}$ at $700^{\circ}C$. In addition, the metal monolith catalyst shows higher catalytic activity and better thermal conductivity than 15wt% Ni/$MgAl_2O_4$ pellet catalyst.

Synthesis of boehmite powder from aluminum etching solution (알루미늄 에칭액으로부터 베마이트 분말 합성)

  • Park, Young-Soo;Wui, In-Hee;Cho, Woo-Seok;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.286-290
    • /
    • 2012
  • Boehmite (AlOOH) powder was synthesized using waste aluminium etching solution. In waste solution, precipitated phase was gibbsite ($Al(OH)_3$), and boehmite (AlOOH) phase was obtained at pH of 7 and 8 controlled by addition of acid. Boehmite powder was obtained by washing process to remove the Na ion in precipitated solution. Mean particle size of obtained powder was 40 nm. Boehmite phase transformed to ${\alpha}-Al_2O_3$ phase via ${\gamma}-Al_2O_3$, ${\delta}-Al_2O_3$, and ${\Theta}-Al_2O_3$.

Effect of Stress Induced Phase Transformation on $Al_2 O_3$ Matrix Dispersed with $ZrO_2-Y_2O_3$ ($Y_2O_3-ZrO_2$$Al_2 O_3$ 매트릭스에 분산시 응력 유기 상변태의 효과)

  • Lee, Tae-Keun;Lim, Eung-Keuk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 1985
  • The effect of stress induced phase transformation on $Al_2 O_3$ matrix dispersed with $ZrO_2-Y_2O_3$ has been studied. In order to determinate the mechanical properties three $Al_2O_3-ZrO_2$ composite series containing 1, 3 and 5 mole% $Y_2O_3$ were prepared. The starting materials were $Al_2O_3$ and $ZrO_2-Y_2O_3$ which was prepared from the aqueous solution of high purity $YCl_3$.$6H_2O$ and $ZrOCl_2$.$8H_2O$. Powder mixtures of $Al_2O_3-ZrO_2$ containing $Y_2O_3$ have been prepared by ball-milling with methanol and the samples were formed by isostatic press and sintered at 150$0^{\circ}C$ for 2hrs. After sintering. the specimens were polished for mechanical determination. The relative density of sintered specimens were also measured. It was found that the addition of 1, 3mole% to {{{{ { ZrO}_{2 } }} allowed full retention of the tetragonal phase in $Al_2O_3-ZrO_2$ but partially stabilized zirconia (PSZ) was produced by additions of 5 mole% $Y_2O_3$.The critical stress-intensity factor KIc of $A_2O_3-ZrO_2$ (containing 1 mole% $Y_2O_3$) composite materials increased with increasing $ZrO_2$ content, The maximum value of KIC=7Mn/$m^3$/2 at 20 mole% $ZrO_2$ exhibited about twice that of the $Al_2 O_3$ The modulus of rupture exhibited a trend similiar to KIC The maximum value of MOR was 580MN/m2. As the amount of Y2O3 increase it was observed that the maximum of KIC and MOR decreased : Additions of 3 mole% $Al_2O_3$ $Y_2O_3$ allowed the maximum of KIC 6MN/$m^3$/2 MOR 540MN/$m^2$ at 15 mole% $ZrO_2$ additions of 5 mole% $Y_2O_3$ allowed the maximum of KIC 5MN/$m^3$/2 MOR 410MN/$m^2$ at 10 mole% $ZrO_2$.

  • PDF

Fluid Flow and Convective Heat Transfer Characteristics of Al2O3 Nanofluids (알루미나 나노유체의 유동 및 대류 열전달 특성)

  • Hwang, Kyo-Sik;Lee, Ji-Hwan;Lee, Byeong-Ho;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.16-20
    • /
    • 2007
  • In this paper, convective heat transfer and flow characteristics of $Al_2O_3$ nanoparticles suspended in water flowing through uniformly heated tubes are experimentally investigated under laminar flow regime. The heat transfer coefficient and the pressure drop of nanoparticles suspended in water are experimentally presented according to the pumping power. In addition, the heat transfer coefficient and the pressure drop of $Al_2O_3$ nanoparticles suspended in water are compared with those of pure water under the fixed pumping power. It is shown that the heat transfer coefficient of $Al_2O_3$ nanofluids with 0.1% volume fraction is enhanced by about 12% although the increment of the pressure drop of those is 4% compared with those of pure water.