• 제목/요약/키워드: $Ag-V/{\gamma}-Al_2O_3$

검색결과 3건 처리시간 0.017초

Ag-V/γ-Al2O3 촉매상에서 탄화수소-Selective Catalytic Reduction에 의한 질소산화물 저감 (DeNOx by Hydrocarbon-Selective Catalytic Reduction on Ag-V/γ-Al2O3 Catalyst)

  • 김문찬;이철규
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.328-336
    • /
    • 2005
  • 본 연구에서는 배출가스 중에 포함된 NO를 비선택적 촉매환원법으로 환원시켜 제거하기 위하여 Ag와 V의 함량을 여러 가지로 달리하여 ${\gamma}-Al_2O_3$에 담지한 촉매를 제조하였고, 제조한 촉매에 대하여 온도, 산소농도, 아황산가스농도의 변화에 따른 $NO_x$의 전환율에 대하여 연구하였다. 또한 제조한 촉매의 물성분석을 통하여 촉매의 상태와 $NO_x$의 전환율과의 관계를 알아보았다. $AgV/{\gamma}-Al_2O_3$ 촉매의 경우에는 고온에서는 $Ag/{\gamma}-Al_2O_3$ 촉매보다 낮은 $NO_x$ 전환율을 나타내는 반면에 저온에서는$Ag/{\gamma}-Al_2O_3$ 촉매보다 높은 $NO_x$ 전환율을 나타내었고, 반응가스 중에 $SO_2$가 함유되어 있어도 $NO_x$의 전환율이 낮아지지 않았다. 반응실험 전 후의 촉매에 대하여 X-ray Diffraction, X-ray Photo electron Spectroscopy, Temperature Programmed Reduction, Ultraviolet-Visible Diffuse Reflectance Spectroscopy 등의 분석결과와 반응실험 결과를 비교하여 볼 때 V가 포함됨으로 인하여 Ag의 산화상태가 잘 유지되지 못하여 고온에서는 $NO_x$ 전환율이 낮아지며, $300^{\circ}C$ 이하의 저온에서는 V의 촉매작용으로 인하여 $NO_x$ 전환율이 높아진 것으로 나타났다.

플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구 (Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System)

  • 이상백;조진오;장동룡;목영선
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).

입내 분산형 Al2O3/Ag 나노복합체의 제조와 특성 (Preparation and Properties of the Intra-type Al2O3Ag Nanocomposites)

  • 천승호;한인섭;히데오 아와지
    • 한국세라믹학회지
    • /
    • 제44권4호
    • /
    • pp.208-213
    • /
    • 2007
  • Alumina/silver ($Al_2O_3/Ag$) nanocomposites with Ag content up to 9 vol% were prepared from nanopowder by soaking method using ${\gamma}-Al_2O_3$ of needle type and spark plasma sintering (SPS). The mechanical properties of specimens were investigated three-point flexural strength and toughness as a function of the Ag contents. The maximum flexural strength of the alumina/silver nanocomposite was 850 MPa for the 1 vol% composite, and also higher than monolith alumina as about 800 MPa at 3, 5, and 7 vol% Ag contents. Fracture toughness by single edged V-notch beam (SEVNB) was $4.05MPa{\cdot}m^{1/2}$ for the 3 vol% composite and maintained about $4.00MPa{\cdot}m^{1/2}$ at 5, and 7 vol% Ag content. Microstructure of fracture surface for each fracture specimens was observed. Due to the inhibition effect of alumina grain growth, the average grain size of nanocomposites depends on the content of Ag nano particles. The fracture morphology of nanocomposite with dislocation (sub-grain boundary) by silver nano-particles of second phases in the alumina matrix also showed transgranular fracture-mode compare with intergranular of monolith alumina. Thermal conductivity of specimens at room temperature was about 40 W/mK for the 1 vol% Ag content.