• 제목/요약/키워드: $AE_{mode}$

검색결과 175건 처리시간 0.022초

Two-Parameter Study on the Jet Regurgitant Mode of Resonant Tube

  • Chang, Se-Myong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권2E호
    • /
    • pp.20-26
    • /
    • 2000
  • A conceptual simplified model of Hartmann-Sprenger tube is suggested and investigated to decouple the regurgitant mode in the present paper. In spite of high nonlinearity, the acoustic behavior of this resonant tube system is dependent on wavelength and depth of the tube. The effect of forcing frequency and tube geometry on jet regurgitant mode are studied and discussed. With a conventional axisymmetric Euler code, sensitive acoustic problems are solved and validated by comparison with analytic theories.

  • PDF

음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석 (Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • 제14권5호
    • /
    • pp.46-53
    • /
    • 2001
  • 집중하중을 받는 일방향 보강(singly oriented ply, SOP) 섬유 금속 적층판(fiber metal laminate, FML)의 손상 거동을 음향 방출법(acoustic emission, AE)을 이용하여 연구하였다. 섬유 방향의 영향을 연구하기 위하여 다양한 섬유 방향을 가지는 SOP FML을 제작하였으며, UTM을 이용하여 압입 하중을 가하였다. 압입 시험 시 발생하는 AE신호는 150kH의 공진 주파수를 가지는 AE센서를 이용하여 측정하였으며, 여기에서 발생된 신호를 하중-변위 선도와 비교하였다. SOP FML의 손상 과정은 균열 개시, 균열 전파, 관통에 따라 3구간으로 나누어 겼다. 균열 개시전까지의 AE 신호의 특성으로 보아 미소 균열이 시편의 하부에서 발생하고 이 균열이 시편의 두께 방향으로 전파되어 섬유 분리를 발생시키는 것으로 생각된다. 발생된 균열은 섬유 방향을 따라 성장하였으며, 이 때 60~80dB의 AE신호들이 발생되었다. 관통이 발생할 때는 80~100dB의 고진폭의 AE신호가 나타나 섬유의 파괴가 발생함을 보였으며, 섬유의 방향이 증가할수록 섬유의 파괴가 많이 발생되었다 누적 AE count선도는 FML의 압입 특성을 잘 나타내어 FML의 특성 변호 예측에 유용하게 사용될 수 있을 것으로 생각된다.

  • PDF

High Performance Implementation of SGCM on High-End IoT Devices

  • Seo, Hwajeong
    • Journal of information and communication convergence engineering
    • /
    • 제15권4호
    • /
    • pp.212-216
    • /
    • 2017
  • In this paper, we introduce novel techniques to improve the high performance of AE functions on modern high-end IoT platforms (ARM-NEON), which support SIMD and cryptography instruction sets. For the Sophie Germain Counter Mode of operation (SGCM), counter modes of encryption and prime field multiplication are required. We chose the Montgomery multiplication for modular multiplication. We perform Montgomery multiplication in a parallel way by exploiting both the ARM and NEON instruction sets. Specifically, the NEON instruction performed 128-bit integer multiplication and the ARM instruction performed Montgomery reduction, simultaneously. This approach hides the latency for ARM in the NEON instruction set. For a high-speed counter mode of encryptions for both AE functions, we introduced two-level computations. When the tasks were large volume, we switched to the NEON instruction to execute the encryption operations. Otherwise, we performed the encryptions on the ARM module.

순환굵은골재 치환율에 따른 콘크리트의 압축파괴 및 음향방출특성 (The Effect of Recycled Coarse Aggregates Replacement Level on Localized Fracture and Acoustic Emission of Concrete in Compression)

  • 김윤수;윤현도;유영찬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.249-252
    • /
    • 2006
  • When concrete is subjected to uniaxial compression, the failure process is normally initialed from a localized zone. The localization of failure governs structural behaviors of concrete. In this paper, the compressive strength and failure behavior of recycled coarse aggregate concrete with different replacement level of recycled coarse aggregates are investigated using acoustic emission(AE). AE characteristics of concrete were investigated during the entire loading period. For these purpose, four recycled coarse aggregate replacement level (i.e 0%, 30%, 60% and 100%) were considered in this paper. Result from this study show AE signal, AE method can apply to investigate a compressive failure mode according to recycled coarse replacement level.

  • PDF

Carbon Fiber Reinforced Plastic(CFRP)복합재의 파괴 거동에 따른 Acoustic Emission(AE)신호 특성에 관한 연구 (A Study on the characteristics of the Signals of AE according to Fracture mode of CFRP)

  • 이경원;김종현;김재성;이보영
    • 한국항공운항학회지
    • /
    • 제17권4호
    • /
    • pp.42-47
    • /
    • 2009
  • Recently, the wide range of the composite materials is used for the making airplanes, trains and automobiles body for the lightweight. Despite having complex structures, composite materials usually have well defined mechanical characteristics. However, composite materials are difficult to understand the fracture mechanism clearly by simple mechanical test. Nondestructive evaluation (NDE) combined with mechanical testing can play a more important role and especially Acoustic Emission Testing (AET) would become known to be a useful tool to assess damage and fracture behavior of composites. In this study The experiment was performed to acquire the acoustic emission signal during tensile test using unidirectional CFRP specimen and the data was analyzed the acoustic emission parameters with the waveform.

  • PDF

Acoustic emission monitoring of damage progression in CFRP retrofitted RC beams

  • Nair, Archana;Cai, C.S.;Pan, Fang;Kong, Xuan
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.111-130
    • /
    • 2014
  • The increased use of carbon fiber reinforced polymer (CFRP) in retrofitting reinforced concrete (RC) members has led to the need to develop non-destructive techniques that can monitor and characterize the unique damage mechanisms exhibited by such structural systems. This paper presented the damage characterization results of six CFRP retrofitted RC beam specimens tested in the laboratory and monitored using acoustic emission (AE). The focus of this study was to continuously monitor the change in AE parameters and analyze them both qualitatively and quantitatively, when brittle failure modes such as debonding occur in these beams. Although deterioration of structural integrity was traceable and can be quantified by monitoring the AE data, individual failure mode characteristics could not be identified due to the complexity of the system failure modes. In all, AE was an effective non-destructive monitoring tool that can trace the failure progression in RC beams retrofitted with CFRP. It would be advantageous to isolate signals originating from the CFRP and concrete, leading to a more clear understanding of the progression of the brittle damage mechanism involved in such a structural system. For practical applications, future studies should focus on spectral analysis of AE data from broadband sensors and automated pattern recognition tools to classify and better correlate AE parameters to failure modes observed.

파형 및 주파수해석에 근거한 굽힘 압전 복합재료 작동기 손상모드의 비파괴적 평가 (Nondestructive Evaluation of Damage Modes in a Bending Piezoelectric Composite Actuator Based on Waveform and Frequency Analyses)

  • 우성충;구남서
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.870-879
    • /
    • 2007
  • In this study, various damage modes in bending unimorph piezoelectric composite actuators with a thin sandwiched PZT plate during bending fracture tests have been evaluated by monitoring acoustic emission (AE) signals in terms of waveform and peak frequency as well as AE parameters. Three kinds of actuator specimens consisting of woven fabric fiber skin layers and a PZT ceramic core layer are loaded with a roller and an AE activity from the specimen is monitored during the entire loading using an AE transducer mounted on the specimen. AE characteristics from a monolithic PZT ceramic with a thickness of $250{\mu}m$ are examined first in order to distinguish different AE signals from various possible damage modes in piezoelectric composite actuators. Post-failure observations and stress analyses in the respective layers of the specimens are conducted to identify particular features in the acoustic emission signal that correspond to specific types of damage modes. As a result, the signal classification based on waveform and peak frequency analyses successfully describes the failure process of the bending piezoelectric composite actuator exhibiting diverse failure mechanisms. Furthermore, it is elucidated that when the PZT ceramic embedded actuators are loaded mechanical bending loads, the failure process of actuator specimens with different lay-up configurations is almost same irrespective of their lay-up configurations.

집중하중을 받는 일방향 섬유 금속 적층판의 손상 거동 (Damage Behavior of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions)

  • 남현욱;김용환;정성욱;정창규;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.407-412
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subject to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, Acoustic Emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. Cumulative AE counts were well predicted crack initiation and crack propagation and AE amplitude were useful for prediction of damage failure mode. During the matrix cracking, fiber debonding and fiber breakage, AE amplitude has $45{\sim}60dB,\;60{\sim}80dB\;and\;90{\sim}100dB$, respectively.

  • PDF

Acoustic Emission Monitoring of Lightning-Damaged CFRP Laminates during Compression-after-Impact Test

  • Shin, Jae-Ha;Kwon, Oh-Yang
    • 비파괴검사학회지
    • /
    • 제32권3호
    • /
    • pp.269-275
    • /
    • 2012
  • Carbon-fiber reinforced plastic(CFRP) laminates made of nano-particle-coated carbon fibers and damaged by a simulated lightning strike were tested under compression-after-impact(CAI) mode, during which the damage progress due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. Conductive nano-particles were coated directly on the fibers, from which CFRP coupons were made. The coupon were subjected to the strikes with a high voltage/current impulse of 10~40 kA within a few ${\mu}s$. The effects of nano-particle coating and the degree of damage induced by the simulated lightning strikes on AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. The assessment during the CAI tests of damaged CFRP showed that AE monitoring appeared to be useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.