• Title/Summary/Keyword: $A{\beta}_{25-35}$-induced neuronal cell damage

Search Result 14, Processing Time 0.03 seconds

Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ25-35 Treatment

  • Jung, Yeon Joo;Jiang, Hui Ling;Lee, Kyung Eun
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • Induction of neurogenesis can occur in the hippocampus in response to various pathological conditions, such as Alzheimer's disease. The aim of this study was to investigate the changes that occur in endogenous neural stem cells in response to amyloid beta $(A{\beta})_{25-35}$-induced neuronal cell damage in organotypic hippocampal slice cultures. Cresyl violet staining and Fluoro-Jade B staining were used to detect neuronal cell damage and changes of mossy fiber terminals were observed by Timm's staining. The immunofl uorescence staining was used to detect the newly generated cells in the subgranular zone (SGZ) of the dentate gyrus with specific marker, 5-bromo-2'-deoxyuridine (BrdU), Ki-67, Nestin, and doublecortin (DCX). In compared to control slices, neuronal cell damage was observed and the mossy fibers were expanded to CA3 area by treatment with $A{\beta}_{25-35}$. Ki-67/Nestin- and BrdU/DCX-positive cells were detected in the SGZ. In conclusion, these results demonstrate that $A{\beta}$-induced neuronal damage results in an increase in endogenous neural stem cells in rat hippocampal slice cultures not only for gliosis but also for neurogenesis.

Inhibitory Effects of Xiaoshuan Zaizao Wan on Excitotoxic and Oxidative Neuronal Damage Induced in Primary Cultured Rat Cortical Cells (일차 배양한 흰쥐 대뇌피질세포의 흥분성 및 산화적 신경세포손상에 대한 소전재조환의 억제효과)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.369-375
    • /
    • 2003
  • Xiaoshuan Zaizao Wan (XZW) has been used in China to improve hemiplegia, deviation of eye and mouth, and dysphasia due to cerebral thrombosis. To characterize pharmacological actions of XZW, we evaluated its effects on neuronal cell damage induced in primary cultured rat cortical cells by various oxidative insults, glutamate or N-methyl-D-aspartate (NMDA), and $\beta$-amyloid fragment ($A_{\beta(25-35)}$). XZW was found to inhibit the oxidative neuronal damage induced by $H_2O_2$, xanthine/xanthine oxidase, or $Fe^{2+}$/ascorbic acid. It also attenuated the excitotoxic damage induced by glutamate or NMDA. The NMDA-induced neurotoxicity was more effectively inhibited than the glutamate-induced toxicity. In addition, we found that XZW protected neurons against the $A_{\beta(25-35)}$-induced toxicity. Moreover; XZW exhibited dramatic inhibition of lipid peroxidation in rat brain homogenates and mild 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together; these results demonstrate that XZW exerts neuroprotective effects against oxidative, excitotoxic, or $A_{\beta(25-35)}$-induced neuronal damage. These findings may provide pharmacological basis for its clinical usage treating the sequelae caused by cerebral thrombosis. Furthermore, XZW may exert beneficial effects on Alzheimer's disease and other oxidative stress-related neurodegenerative disorders.

Protective Effect of Sanguisorba officinalis L. Root on Amyloid ${\beta}$ Protein (25-35)-induced Neuronal Cell Damage in Cultured Rat Cortical Neuron

  • Ban, Ju-Yeon;Cho, Soon-Ock;Jeon, So-Young;Song, Kyung-Sik;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.219-226
    • /
    • 2005
  • Sanguisorbae radix (SR) from Sanguisorba officinalis L. (Losaceae) is widely used in Korea and China due to its various pharmacological activity. The present study aims to investigate the effect of the methanol extract of SR on amyloid ${\beta}$ Protein(25-35) $(A{\beta}\;(25-35))$, a synthetic 25-35 amyloid peptide, -induced neurotoxicity using cultured rat cortical neurons. SR, over a concentration range of $10-50\;{\mu}g/ml$, inhibited the $A{\beta}$ (25-35) $(10\;{\mu}M)-induced$ neuronal cell death, as assessed by a 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. Pretreatment of SR $(50\;{\mu}g/ml)$ inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced} elevation of cytosolic calcium concentration $([Ca^{2+}]c)$, which was measured by a fluorescent dye, fluo-4 AM. SR $(10\;and\;50\;{\mu}g/ml)$ inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}(25-35)$, which was measured by HPLC, and generation of reactive oxygen species. These results suggest that SR prevents $A{\beta}$ (25-35)-induced neuronal cell damage in vitro.

Protection of Amyloid ${\beta}$ Protein (25-35)-induced Neuronal Cell Damage by Methanol Extract of New Stem of Phyllostachys nigra Munro var. henonis Stapf in Cultured Rat Cortical Neuron

  • Ban, Ju-Yeon;Cho, Soon-Ock;Kwon, Soon-Ho;Kim, Jin-Bae;Song, Nak-Sul;Bae, Ki-Whan;Song, Kyung-Sik;Seng, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • Caulis Bambusae in Taenia is widely used in Korea and China due to its various pharmacological activity. The present study aims to investigate the effect of the methanol extract of Caulis Bambusae in Taenia (CB) from Phyllostachys nigra Munro var. henonis Stapf (Gramineae) on amyloid ${\beta}$ protein (25-35) $(A{\beta}\;(25-35))$, a synthetic 25-35 amyloid peptide, -induced neurotoxicity using cultured rat cortical neurons. CB, over a concentration range of $10-50{\mu}g/{\mu}l$, inhibited the $A{\beta}\;(25-35)\;(10\;{\mu}M)$-induced neuronal cell death, as assessed by a 3-[4,5-dimethyIthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. CB $(50\;{\mu}g/{\mu}l)$ inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}$, (25-35) which was measured by HPLC. Pretreatment of CB $(50\;{\mu}g/{\mu}l)$ inhibited $10{\mu}M\;A{\beta}$ (25-35)-induced elevation of cytosolic calcium concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, fluo-4 AM, and generation of reactive oxygen species. These results suggest that CB prevents $A{\beta}$ (25-35)-induced neuronal ell damage in vitro.

Korean Mistletoe (Viscum album var. coloratum) Inhibits Amyloid β Protein (25-35)-induced Cultured Neuronal Cell Damage and Memory Impairment

  • Jang, Ji Yeon;Kim, Se-Yong;Song, Kyung-Sik;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.134-140
    • /
    • 2015
  • The present study aims to investigate the effect of methanol extract of Korean mistletoe (KM; Viscum album var. coloratum), on amyloid $\beta$ protein ($A\beta$) (25-35), a synthetic 25-35 amyloid peptide, -induced neurotoxicity in cultured rat cerebral cortical neurons and memory impairment in mice. Exposure of cultured neurons to $10{\mu}M$ $A\beta$ (25-35) for 24 h induced a neuronal cell death, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. KM (10, 30 and $50{\mu}g/ml$) significantly inhibited the $A\beta$ (25-35)-induced apoptotic neuronal death. KM ($50{\mu}g/ml$) inhibited 10 μM Aβ (25-35)-induced elevation of intracellular calcium concentration ([Ca2+]i), which was measured by a fluorescent dye, Fluo-4 AM. Glutamate release into medium and generation of reactive oxygen species (ROS) induced by $10{\mu}M$ $A\beta$ (25-35) were also inhibited by KM (10, 30 and $50{\mu}g/ml$). These results suggest that KM may mitigate the $A\beta$ (25-35)-induced neurotoxicity by interfering with the increase of [Ca2+]i and then inhibiting glutamate release and generation of ROS in cultured neurons. In addition, orally administered KM (25 and 50 mg/kg, 7 days) significantly prevented memory impairment induced by intracerebroventricular injection of $A\beta$ (25-35) (8 nmol). Taken together, it is suggested that anti-dementia effect of KM is due to its neuroprotective effect against $A\beta$ (25-35)-induced neurotoxicity and that KM may have therapeutic role in prevention of the progression of Alzheimer's disease.

Moutan Cortex Extract Inhibits Amyloid ${\beta}$ Protein (25-35)-induced Neurotoxicity in Cultured Rat Cortical Neurons (Amyloid ${\beta}$ 2 Protein (25-35) 유도 배양신경세포 독성에 대한 목단피의 억제효과)

  • Kim, Joo-Youn;Ju, Hyun-Soo;Ban, Ju-Yeon;Song, Kyung-Sik;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.409-415
    • /
    • 2008
  • Moutan cortex, the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), has pharmacological effects such as anti-inflammatory, antiallergic, analgesic and antioxidant activities. We investigated a methanol extract of Moutan cortex for neuroprotective effects on neurotoxicity induced by amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons. Exposure of cultured cortical neurons to $10\;{\mu}M\;A{\beta}$ (25-35) for 24 h induced neuronal apoptotic death. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced neuronal cell death at 30 and $50\;{\mu}g/m{\ell}$, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) which were measured by fluorescent dyes. Moutan cortex also inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}$ (25-35), which was measured by HPLC. These results suggest that Moutan cortex prevents $A{\beta}$ (25-35)-induced neuronal cell damage by interfering with the increase of $[Ca^{2+}]_i$, and then inhibiting glutamate release and ROS generation. Moutan cortex may have a therapeutic role in preventing the progression of Alzheimer's disease.

Populus tomentiglandulosa protects against amyloid-beta25-35-induced neuronal damage in SH-SY5Y cells

  • Yu Ri Kwon;Ji-Hyun Kim;Sanghyun Lee;Hyun Young Kim;Eun Ju Cho
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.408-415
    • /
    • 2023
  • Alzheimer's disease constitutes a large proportion of all neurodegenerative diseases and is mainly caused by excess aggregation of amyloid beta (Aβ), which results in oxidative stress, inflammation, and apoptosis in the neurons. Populus tomentiglandulosa belongs to the Salicaceae family and is widely distributed in Korea; the antioxidant activities of the extract and fractions from P. tomentiglandulosa have been demonstrated in previous studies. Specifically, the ethyl acetate (EtOAc) fraction of P. tomentiglandulosa (EtOAc-PT) shows the most powerful antioxidative activity. Therefore, the present study investigates the protective effects of EtOAc-PT against neuronal damage in Aβ25-35-stimulated SH-SY5Y cells. EtOAc-PT restored cell viability significantly as well as inhibited the levels of reactive oxygen species and lactate dehydrogenase release compared to the Aβ25-35-induced control group. Furthermore, the inflammation- and apoptosis-related protein expressions were investigated to demonstrate its neuroprotective mechanism. EtOAc-PT downmodulated the expressions of inducible nitric oxide synthase, cyclooxygenase-2, B-cell lymphoma 2 associated X, and B-cell lymphoma 2. Thus, the findings show that EtOAc-PT has protective effects against Aβ25-35 by suppressing oxidative stress, inflammation, and apoptosis.

Antioxidant and Neuroprotective Effects of Hesperidin and its Aglycone Hesperetin

  • Cho, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.699-706
    • /
    • 2006
  • The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by $H_2O_2$ or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the $A_{{\beta}(25-35)}-induced$ neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

Antioxidant Activity and Protective Effect of Caffeic Acid against Oxidative Stress Induced by Amyloid Beta and LPS in C6 Glial Cells (Caffeic Acid의 항산화 활성 및 Amyloid beta와 LPS에 의한 C6 Glial 세포의 산화적 스트레스 보호 효과)

  • Kim, Ji Hyun;Wang, Qian;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • This study was investigated the radical scavenging effect and the protective activity of caffeic acid (CA) against oxidative stress. CA showed strong 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and hydroxyl radical ( OH) scavenging activity, showing 42.00% and 87.22% at 5 μM concentration of DPPH and ·OH scavenging activity, respectively. Furthermore, we studied protective activity of CA from amyloid beta (A${\beta}$25-35) and lipopolysaccharide (LPS) induced neuronal cell damage and neuronal inflammation using C6 glial cells. The treatment of A${\beta}$25-35 to C6 glial cell showed declines in cell viability and high generation levels of reactive oxygen species (ROS). However, the treatment of CA increased cell viability. The treatment of 5 ${{\mu}M}$ CA led to the elevation of cell viability from 59.28% to 81.22%. In addition, the production of ROS decreased cellular levels of ROS by the treatment of CA. The treatment of LPS to C6 glial cells increased significant elevation of nitric oxide (NO) production, while CA decreased NO production significantly. The production of NO increased by the treatment of LPS to 131.08%, while CA at the concentration of 1 ${{\mu}M}$ declined the NO production to 104.86%. The present study indicated thatCA attenuated A${\beta}$25-35-induced neuronal oxidative stress and inflammation by LPS, suggesting as a promising agent for the neurodegenerative diseases.

Protective Effect of Luteolin against β-Amyloid-induced Cell Death and Damage in BV-2 Microglial Cells (베타아밀로이드로 유도된 신경소교세포 사멸에 대한 루테올린의 보호효과 연구)

  • Park, Gyu Hwan;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate neuroprotective effects and molecular mechanisms of luteolin against ${\beta}$-amyloid ($A{\beta}_{25-35}$)-induced oxidative cell death in BV-2 cells. Methods : The protective effects of luteolin against $A{\beta}_{25-35}$-induced cytotoxicity and apoptotic cell death were determined by MTT dye reduction assay and TUNEL staining, respectively. The apoptotic cell death was further analyzed by measuring mitochondrial transmembrane potential and expression of pro- and/or anti-apoptotic proteins. To elucidate the molecular mechanisms underlying the protective effects of luteolin, intracellular accumulation of reactive oxygen species, oxidative damages, and expression of antioxidant enzymes were examined. Results : Luteolin pretreatment effectively attenuated $A{\beta}_{25-35}$-induced apoptotic cell death indices such as DNA fragmentation, dissipation of mitochondrial transmembrane potential, increased Bax/Bcl-2 ratio, and activation of c-Jun N-terminal kinase and caspase-3 in BV-2 cells. Furthermore, $A{\beta}_{25-35}$-induced intracellular formation of reactive oxygen species and subsequent oxidative damages such as lipid peroxidation and depletion of endogenous antioxidant glutathione were suppressed by luteolin treatment. The neuroprotective effects of luteolin might be mediated by up-regulation of cellular antioxidant defense system via up-regulation of ${\gamma}$-glutamylcysteine ligase, a rate-limiting enzyme in the glutathione biosynthesis and superoxide dismutase, an enzyme involved in dismutation of superoxide anion into oxygen and hydrogen peroxide. Conclusions : These findings suggest that luteolin has a potential to protect against $A{\beta}_{25-35}$-induced neuronal cell death and damages thereby exhibiting therapeutic utilization for the prevention and/or treatment of Alzheimer's disease.