• Title/Summary/Keyword: $A{\beta}$ aggregation-inhibitor

Search Result 14, Processing Time 0.03 seconds

Synthesis of 2-(4-Hydroxyphenyl)benzofurans and Their Application to $\beta$-Amyloid Aggregation Inhibitor

  • Choi, Hong-Dae;Seo, Pil-Ja;Son, Byeng-Wha;Kang, Byoung-Won
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • The facile synthesis of a series of 2-(4-hydroxyphenyl)benzofurans (4a-e) is described. The one-pot reaction of 4-substituted phenols with the chloride 1 in the presence of zinc chloride afforded 3-methylthio-2-(4-acetoxyphenyl)benzofurans (2a-e). The compounds 4a-e were obtained from the hydrolysis of 2a-e followed by the desulfurization of the resulting 3-methylthio-2-(4-hydroxyphenyl)benzofurans (3a-e). 5-Methyl-3-p-toluoyl-2 -[4-(3-diethylaminopropoxy)phenyl]benzofuran (7), a $\beta$-amyloid aggregation inhibitor, was synthesized by three steps starting from 4a.

Isolation of Streptomyces sp. KK565 as a Producer of ${\beta}-Amyloid$ Aggregation Inhibitor

  • Hwang, Sung-Eun;Im, Hyung-Min;Kim, Dong-Hoon;Shin, Hyun-Ju;Shin, Dong-Hoon;Park, Jeong-Eun;Jo, In-Ho;Kim, Chang-Jin;Yoo, Jong-Shin;Kang, Jong-Min;Lim, Dong-Yeon;Ahn-Jo, Snag-Mee;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.809-814
    • /
    • 2003
  • ${\beta}-amyloid$ ($A{\beta}$) peptides from the proteolytic processing of ${\beta}-amyloid$ precursor protein (${\beta}-APP$) aggregates in the brain to form senile plaques, and their aggregation plays a key role in pathogenesis of Alzheimer's disease (AD). To isolate an active compound that has an $A{\beta}$ aggregation-inhibitory activity, 2,000 microbial metabolite libraries were screened based on their ability to inhibit $A{\beta}$ aggregation by using both Congo red and thioflavin T assays. As a result, a water-soluble fraction of a soil microorganism, KK565, showed a potent $A{\beta}$ aggregation-inhibitory activity. The strain was identified as Streptomyces species, based on the cultural and morphological characteristics, the presence of diaminopimelic acid in the cell wall, and the sugar patterns for the whole-cell extract. In addition, the purification of active principle resulted in identifying a heat-unstable protein responsible for the $A{\beta}$ aggregation-inhibitory activity.

Synthesis of New Benzylpiperidinyl Ether Derivatives as Amyloid-beta Aggregation Inhibitors (베타아밀로이드응집 억제제 도출을 위한 새로운 벤질피페리디닐에터 유도체의 합성)

  • Kwon, Young-Ee
    • YAKHAK HOEJI
    • /
    • v.50 no.5
    • /
    • pp.326-331
    • /
    • 2006
  • We designed and synthesized new benzylpiperidinyl ether derivatives as beta-amyloid aggregation inhibitors for the development of novel anti-Alzheimer's disease agents. As starting material, 4-hydroxypiperidine was used. For protection of the amine group in piperidine (2), di-tert-butyl dicarbonate was reacted with 4-hydroxypiperidine in the presence of triethylamine. For introduction of benzyl group, benzylbromide was treated with compound 2 in dioxane. After deprotection of Boc group on amine in compound 3, ester (5) was synthesized by addition of ethyl-4-chlorobutyrate. The alcohol 6 was synthesized by hydride reduction of 5 using $LiAlH_4$. To obtain final products (7-14), the alcohol 6 was condensed with each of substituted benzoic acids. To screen beta-amyloid aggregation inhibition of the products, thioflavinT assay was performed using $A{\beta}1-42\;at\;37^{\circ}C$ for 26 h incubation, in vitro. From the result of screening, compound 8, 9, 11 and 12 showed effective activity about $65{\sim}85\;{\mu}M\;as\;IC_{50}$ value. Among the prepared compounds, 4-[4-(benzyloxy)piperidino]butyl-4-chlorobenzoate (8) was the most effective inhibitor having $IC_{50}\;of\;65.4{\mu}M$.

Synthesis of 5-Chloro-3-[4-(3-diethylaminopropoxy)benzoyl]-2(4-methoxyphenyl)benzofuran as a $\beta-Amyloid$ Aggregation

  • Choi, Hong-Dae;Seo, Pil-Ja;Son, Byeong-Wha;Kang, Byoung-Won
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.985-989
    • /
    • 2003
  • An efficient synthesis of 5-chloro-3-[4-(3-diethylaminopropoxy)benzoyl]-2-(4-methoxyphenyl)benzofuran (8), a potent $\beta$-amyloid aggregation inhibitor, is described. 5-Chloro-2-(4-methoxyphenyl)benzofuran (3) was obtained by the one-pot synthesis of 4-chlorophenol with $\omega$(methylsulfinyl)-p-methoxyacetophenone (1) under Pummerer reaction conditions, and it was followed by the desulfurization of the resultant 5-chloro-3-methylthio-2-(4-methoxyphenyl)benzofuran (2e). Acylation of benzofuran 3 with 4-(3-bromopropoxy)benzoyl chloride (6) gave the ketone 7, which was converted into compound 8 by the treatment of diethylamine.

Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa

  • Lee, Dong-Ha;Kim, Hyun-Hong;Lim, Deok Hwi;Kim, Jong-Lae;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • In this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordycepin (W-cordycepin) from CE-WIB801C on the inhibition of collagen-induced platelet aggregation. CE-WIB801C and cordycepin stimulated the phosphorylation of VASP ($Ser^{157}$) and the dephosphorylation of PI3K and Akt, and inhibited the binding of fibrinogen to glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) and the release of ATP and serotonin in collagen-induced platelet aggregation. A-kinase inhibitor Rp-8-Br-cAMPS reduced CE-WIB801C-, and cordycepin-increased VASP ($Ser^{157}$) phosphorylation, and increased CE-WIB801C-, and cordycepin-inhibited the fibrinogen binding to ${\alpha}IIb/{\beta}3$. Therefore, we demonstrate that CE-WIB801C-, and cordycepin-inhibited fibrinogen binding to ${\alpha}IIb/{\beta}3$are due to stimulation of cAMP-dependent phosphorylation of VASP ($Ser^{157}$), and inhibition of PI3K/Akt phosphorylation. These results strongly indicate that CE-WIB801C and cordycepin may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Characterization of a New Anti-dementia β-secretase Inhibitory Peptide from Arctoscopus japonicus

  • Park, Seul Bit Na;Kim, Sung Rae;Byun, Hee-Guk
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.220-227
    • /
    • 2018
  • Amyloid plaque is a product of aggregation of ${\beta}$-amyloid peptide ($A{\beta}$) and is an important factor in the pathogenesis of Alzheimer's Disease (AD). $A{\beta}$ is a major component of amyloid plaque and vascular deposits in the AD brain. The enzyme ${\beta}$-secretase is required for the production of $A{\beta}$; thus, prevention of the formation of $A{\beta}$ through the inhibition of ${\beta}$-secretase is a major focus in the study of the treatment of AD. In this study, we investigated ${\beta}$-secretase inhibitory activity of an Arctoscopus japonicus peptide. An Alcalase hydrolysate had the highest ${\beta}$-secretase inhibitory activity. A ${\beta}$-secretase inhibitory activity peptide was separated using ion exchange column chromatography (carboxy-methyl: CM, quaternary methyl ammonium: QMA) and reverse phase high performance liquid chromatography (RP-HPLC) on a C18 column. The $IC_{50}$ value of the purified peptide was $248.2{\pm}1.73{\mu}g/mL$. The ${\beta}$-secretase inhibitory peptide was identified as a six amino acid residue of Gly-Pro-Val-Gly-Ala-Pro (MW: 497.27 Da). In cell viability experiments, the final purified fraction, the carboxy-methyl ion exchange column fraction (CM-F1) showed no significant cytotoxic effect in SH-SY5Y cells at concentrations below $100{\mu}g/mL$ in 24 h. The results of this study suggest that peptides separated from Arctoscopus japonicus may be beneficial as ${\beta}$-secretase inhibitor compounds in functional foods.

Purification and characterization of β-secretase inhibitory peptide from sea hare (Aplysia kurodai) by enzymatic hydrolysis

  • Lee, Jung Kwon;Kim, Sung Rae;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • Amyloid plaque, also called senile plaque, the product of aggregation of ${\beta}$-amyloid peptides ($A{\beta}$), is observed in brains of the patients with Alzheimer's disease (AD) and is one of the key factors in etiology of the disease. In this study, hydrolysates obtained from the sea hare (Aplysia kurodai) were investigated for ${\beta}$-secretase inhibitory peptide. The sea hare's muscle protein was hydrolyzed using six enzymes in a batch reactor. Trypsin hydrolysate had highest ${\beta}$-secretase inhibitory activity compared to the other hydrolysates. ${\beta}$-secretase inhibitory peptide was separated using Sephadex G-25 column chromatography and high-performance liquid chromatography on a C18 column. ${\beta}$-secretase inhibitory peptide was identified as eight amino acid residues of Val-Ala-Ala-Leu-Met-Leu-Phe-Asn by N-terminal amino acid sequence analysis. $IC_{50}$ value of purified ${\beta}$-secretase inhibitory peptide was $74.25{\mu}M$, and Lineweaver-Burk plots suggested that the peptide purified from sea hare muscle protein acts as a competitive inhibitor against ${\beta}$-secretase. Results of this study suggest that peptides derived from sea hare muscle may be beneficial as anti-dementia compounds in functional foods or as pharmaceuticals.

Development of Fibrinolytic Agents from Snake Venoms

  • 김영식;한범수;장일무
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.279-279
    • /
    • 1994
  • Fibrinolytic proteases, piscivorase I (PI) and piscivorase II (PII), were isolated from Agkistrodon piscivorus piscivorus (eastern cotonmouth moccasin) venom using gel filtration on Bio-Gel P100 and ion-exchange chromatography on CM-Sepharose. The molecular welghts of two proteases were approximately 23400 and 29000. Their isoelectric points 6.6 and 8.5, respectively. The partial amino acid sequences of PI were characterized by tryptic digestion. PI readily cleaves the A${\alpha}$-and B${\beta}$-chaln of fibronogen, but PII rapidly cleaves A${\alpha}$-chain and more slowly the B${\beta}$-chain, They were activated by Ca$\^$2+/, Mg$\^$2+/ and Ba$\^$2+/, but inhibited by Zn$\^$2+/, Cu$\^$2+/ and Mn$\^$2+/. Two enzymes were also inhibited by cysten, ${\beta}$-mercapto -ethanol, and by metal chelators such as EDTA and EGTA, but not by benzamidine, PMSF, soybean trypsin inhibitor and aprotinin. They did not act like thrombin, plasmin and kallikrein, using specific chromogenllc substrates. Two protease did not induce platelet aggregation. PI showed low hemorrhagic activity at dosage of 50 $\mu\textrm{g}$.

  • PDF

Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

  • Kwon, Hyuk-Woo;Shin, Jung-Hae;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.76-85
    • /
    • 2016
  • Background: Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$. Methods: We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$, and clot retraction. Results: KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via phosphorylation of VASP ($Ser^{157}$), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP ($Ser^{157}$) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of ${\alpha}IIb/{\beta}3$ activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of $[Ca^{2+}]_i$ mobilization and increase of cAMP production. Conclusion: These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$, and clot retraction, and may prevent platelet ${\alpha}IIb/{\beta}3$-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS.

Cell-Based Screen Using Amyloid Mimic β23 Expression Identifies Peucedanocoumarin III as a Novel Inhibitor of α-Synuclein and Huntingtin Aggregates

  • Ham, Sangwoo;Kim, Hyojung;Hwang, Seojin;Kang, Hyunook;Yun, Seung Pil;Kim, Sangjune;Kim, Donghoon;Kwon, Hyun Sook;Lee, Yun-Song;Cho, MyoungLae;Shin, Heung-Mook;Choi, Heejung;Chung, Ka Young;Ko, Han Seok;Lee, Gum Hwa;Lee, Yunjong
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.480-494
    • /
    • 2019
  • Aggregates of disease-causing proteins dysregulate cellular functions, thereby causing neuronal cell loss in diverse neurodegenerative diseases. Although many in vitro or in vivo studies of protein aggregate inhibitors have been performed, a therapeutic strategy to control aggregate toxicity has not been earnestly pursued, partly due to the limitations of available aggregate models. In this study, we established a tetracycline (Tet)-inducible nuclear aggregate (${\beta}23$) expression model to screen potential lead compounds inhibiting ${\beta}23$-induced toxicity. High-throughput screening identified several natural compounds as nuclear ${\beta}23$ inhibitors, including peucedanocoumarin III (PCIII). Interestingly, PCIII accelerates disaggregation and proteasomal clearance of both nuclear and cytosolic ${\beta}23$ aggregates and protects SH-SY5Y cells from toxicity induced by ${\beta}23$ expression. Of translational relevance, PCIII disassembled fibrils and enhanced clearance of cytosolic and nuclear protein aggregates in cellular models of huntingtin and ${\alpha}$-synuclein aggregation. Moreover, cellular toxicity was diminished with PCIII treatment for polyglutamine (PolyQ)-huntingtin expression and ${\alpha}$-synuclein expression in conjunction with 6-hydroxydopamine (6-OHDA) treatment. Importantly, PCIII not only inhibited ${\alpha}$-synuclein aggregation but also disaggregated preformed ${\alpha}$-synuclein fibrils in vitro. Taken together, our results suggest that a Tet-Off ${\beta}23$ cell model could serve as a robust platform for screening effective lead compounds inhibiting nuclear or cytosolic protein aggregates. Brain-permeable PCIII or its derivatives could be beneficial for eliminating established protein aggregates.