Heuristic based Genetic Algorithm Pathfinding(H-GAP), a method without the need for node and edge information, can compensate the disadvantages of existing pathfinding algorithm, and perform the path search at high speed. However, because the pathfinding by H-GAP is non-node-based, it may not be an optimal path when it includes unnecessary path information. In this paper, we propose an algorithm to optimize the search path using H-GAP. The proposed algorithm optimizes the path by removing unnecessary path information through ray-tracing algorithm after the H-GAP path search is completed.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.8
/
pp.1615-1622
/
2009
Generally, the Terminal Based Navigation System(TBNS) used embedded road data searches a path that has less qualitative than The Center Based Navigation System(CBNS). TBNS has not used real time road data but it is recently able to use it with technique such as TPEG. However, it causes to increase a cost of exploring by using real time road data for improvement quality of a path, because of limited performance. In this paper, we propose a Dynamic Heuristic to improve quality of path in the TBNS. Dynamic Heuristic(DH) is not fixed data and is dynamically modified using transferred real time road data from server. In this paper, we propose path-lading algorithm with Maximum Speed Dynamic Heuristic (DH-MAX) and do an experiment. The DH-MAX is to be used the highest speed as DH, in real map divided by same size. And proposed algorithm searches path using the priority searching only of the fixed data, but also the highest speed with real time information. In the performance test, the quality of path is enhanced but the cost of searching is increased than A* algorithm.
Two-dimensional packing algorithm can be used for allocating submeshes in mesh multiprocessor systems. Previously, we developed an efficient packing algorithm called TP heuristic, and showed how the results of the packing could be used for allocating submeshes. In this paper, we present theoretical performance bounds for TP heuristic. We also present a parallel version of the algorithm that consumes reduced time when it is executed by multiple processors in mesh multiprocessors.
Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.457-459
/
2003
클러스터 시스템은 상대적으로 가격이 싼 컴퓨터를 고성능의 네트워크(Network)로 묶어서 슈퍼컴퓨터와 같은 고성능을 가지도록 만들어진 시스템이다. 이런 클러스터 컴퓨팅 환경에서 효율적인 스케줄링은 그 성능에 직접적인 영향을 주는 요소이다. 이런 시스템에서 완전한 동시 스케줄링(Coscheduling)은 서로 교환해야하는 정보가 많아지기 때문에 그 구현이 어렵다. 이 상황에서 메시지를 기다리는 정보와 메시지의 도착 정보를 이용해서 즉 단지 그 노드(Node) 자체의 정보만을 이용해 동시 스케줄링의 효과를 구현할 수 있다. 그리고 이것을 이용한 알고리즘 중에 주기적 추진(Periodic Boost(PB))이 있다. 이 논문에서는 주기적 추진에 휴리스틱을 이용하du 더 효과적인 스케줄링을 할 수 있는 알고리즘을 소개한다. 그리고 이 휴리스틱의 효과를 검증하기 위해서 클러스터 노드 2개를 이용해서 실험을 했다. 실험은 계산대 통신 비율(Communication-to-Computation ratio)을 변화시켜가면서 총 수행시간을 측정하고, 서로 통신하는 양이 다른 프로세스를 섞어서 그 성능을 실험한 결과 휴리스틱이 주기적 추진(PB)에서 불필요하게 낭비되는 자원을 효율적으로 사용할 수 있음을 알 수 있었다.
The Transactions of the Korea Information Processing Society
/
v.6
no.4
/
pp.890-900
/
1999
In homogeneous multiprocessor systems, the task allocation algorithm which equally assigns tasks to processors if possible is generally used. But this algorithm is not suitable to accomplish to accomplish effective task allocation in heterogeneous multiprocessor systems. JSQ (Join the Shortest Queue) algorithm is often used in heterogeneous multiprocessor systems. Unfortunately, JSQ algorithm is not efficient when the differences of capabilities of processors are far large. To solve this problem, we suggest a heuristic task allocation algorithm that makes use of dynamic information such as task arrival time, task service time, and number of finished tasks. The results of simulation show that the proposed heuristic allocation algorithm improves the system performance.
The TSP(Traveling Salesman Problem) has been known as NP-complete, there have been various studies to find the near optimal solution. The nearest neighbor heuristic is more simple than the other algorithms which are to find the optimal solution. This paper designs and implements a new distributed nearest neighbor heuristic with bounding function for the TSP using the master/slave model of PVM(Parallel Virtual Machine). Distributed genetic algorithm obtains a near optimal solution and distributed nearest neighbor heuristic finds an optimal solution for the TSP using the near optimal value obtained by distributed genetic algorithm as the initial bounding value. Especially, we get more speedup using a new genetic operator in the genetic algorithm.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.5
/
pp.540-548
/
2012
The Weapon Target Allocation(WTA) problem is the NP-Complete problem. The WTA problem is that the threatful air targets are assigned by weapon of allies for killing the targets. A good solution of NP-complete problem is heuristic algorithms. Genetic algorithms are commonly used heuristic for global optimization, and it is good solution on the diverse problem domain. But there has been very little research done on the generation of their initial population. The initialization of population is one of the GA step, and it decide to initial value of individuals. In this paper, we propose to the population initialization method to improve a Genetic Algorithm. When it initializes population, the proposed algorithm reflects the characteristics of the WTA problem domain, and inherits the dominant gene. In addition, the search space widely spread in the problem space to find efficiently the good quality solution. In this paper, the proposed algorithm to verify performance examine that an analysis of various properties and the experimental results by analyzing the performance compare to other algorithms. The proposed algorithm compared to the other initialization methods and a general genetic algorithm. As a result, the proposed algorithm showed better performance in WTA problem than the other algorithms. In particular, the proposed algorithm is a good way to apply to the variety of situation WTA problem domain, because the proposed algorithm can be applied flexibly to WTA problem by the adjustment of RMI.
A* algorithm is a well known pathfinding algorithm. However, there may be a limit to use A* algorithm in real-time in a map where many interactions occur between objects or many obstacles exist. Therefore, it may be necessary to find a naturally looking path quickly instead of finding a shortest path in games. In this paper, we propose a new heuristic function to exploit path information in a map. We also show that the pathfinding algorithm based on the proposed heuristic function can find a good path much faster than A* algorithm on several grid maps.
Nowadays, one of the important functionalities required from robot task planners is to generate plans to compose existing component services into a new service. In this paper, we introduce the design and implementation of a heuristic search planner, JPLAN, as a kernel module for component service composition. JPLAN uses a local search algorithm and planning graph heuristics. The local search algorithm, EHC+, is an extended version of the Enforced Hill-Climbing(EHC) which have shown high efficiency applied in state-space planners including FF. It requires some amount of additional local search, but it is expected to reduce overall amount of search to arrive at a goal state and get shorter plans. We also present some effective heuristic extraction methods which are necessarily needed for search on a large state-space. The heuristic extraction methods utilize planning graphs that have been first used for plan generation in Graphplan. We introduce some planning graph heuristics and then analyze their effects on plan generation through experiments.
The competitiveness in today's global market forces many companies to develop families of products to provide enough variety for the marketplace. The challenge when designing a product family is in resolving the tradeoff between product commonality and distinctiveness. Simultaneously it is necessary to consider environmental performance to design a product family as well as to shorten lead-times, improve quality and reduce costs. This paper proposes a metaheuristic algorithm based redesign methodology for green product family considering environmental performance. The proposed method uses a genetic algorithm as metaheuristic algorithm and green product family index (GPFI) to support green product family design. In addition, it provides the redesign methodology such as product family level and component level. A case study used table lamps as an product family's example shows the verification and effectiveness of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.