In this study, to evaluate the abatement of runoff pollution loads by the road sweeping(cleaning), various investigations are implemented at the sample area of the highway. As the results of evaluating the removal efficiency of pollutants along road cleaning, TSS showed about 78 % of the removal efficiency and COD showed 49 % of removal efficiency through the operation of cleaning vehicle of vacuum suction method. In case of TN and TP, they showed the relatively-lower removal efficiency by 30~35 %. TSS removal efficiency along the number of cleaning appeared about 60 % in case of one time of cleaning and the additional removal effect did not appear though the number of cleaning increased to two times. With running speed of cleaning vehicle, TSS removal ratio is lessened from 60 % to 20 % when cleaning vehicle speed up to 20 km/hr from 6 km/hr. It seems that the reasons why the removal efficiencies are inversely proportional to its speed are related to the lower vacuum efficiencies and the disturbed particles on the road. In the pollutant build-up analysis, it is showed that it takes more time to the critical pollutant build-up in the shoulder than the center of the road. It is also showed that the proper cleaning cycle is recommended as 4~6 dry weather days without rainfall events.
Emissions of diesel vehicles have been regulated by NEDC mode for a long time. However, the NEDC mode has been known the control of emission reduction is not reflected properly on actual road conditions. For these reasons, diesel vehicle emissions are regulated in both NEDC mode and WLTC mode from 2017 to 2020, from 2020 onwards, the emissions of diesel vehicles will measure in WLTC mode only and will not be able to exceed 1.5 times the regulated value. The purpose of this study is to analyze the development trend of diesel vehicle after-treatment system in order to comply with the future regulations on diesel vehicle. As a result, it is essential to reduce the NOx emissions of diesel vehicles for Euro 6, the NOx emissions of the test vehicle equipped with SCR were 30% to 50% loss than the test vehicle equipped with LNT despite the higher curb weight and engine displacement.
This paper proposes a signal merging algorithm to increase the signal-to-noise ratio (SNR) of a GPS correlator output to estimate the roll angle of a rotating vehicle in a weak GPS signal environment. Rotation Locked Loop (RLL) algorithm is used to estimate a roll angle using the characteristics that the power of the GPS signal measured at the receiver of a rotating vehicle varies periodically. First, delay times are calculated to synchronize GPS signals using satellites' and receiver's positions and the rotation frequency of a vehicle, and then correlator outputs are delayed in time and merged with each other, resulting in the increase of an SNR in a correlator output. Finally, simulations are conducted and the performance of the proposed algorithm is validated.
Kim, Dong-Hyung;Kim, Chang-Jun;Kim, Young-Ryul;Han, Chang-Soo
Journal of Institute of Control, Robotics and Systems
/
v.16
no.7
/
pp.632-638
/
2010
This paper presents an optimum tire force distribution method for 6WD/6WS(6-Wheel-Drive and 6-Wheel-Steering) electric vehicles. Using an independent steering and driving system, the performance of 6WD/6WS vehicles can be improved, as, for example, with respect to their maneuverability under low speed and their stability at high speed. Therefore, there should be a control strategy for finding the optimum tire forces that satisfy the driver's command and minimize energy consumption. From the driver's commands (steering angle and accelerator/brake pedal stroke), the desired yaw moment, the desired lateral force, and the desired longitudinal force were obtained. These three values were distributed to each wheel as the torque and the steering angle, based on the optimum tire force distribution method. The optimum tire force distribution method finds the longitudinal/lateral tire forces of each wheel that minimize the cost function, which is the sum of the normalized tire forces. Next, the longitudinal/lateral tire forces of each wheel are converted into the reference torque inputs and the steering wheel angle inputs. The proposed method was tested through a simulation, and its effectiveness was verified.
Transactions of the Korean Society of Automotive Engineers
/
v.15
no.3
/
pp.153-159
/
2007
Nano-Particles are influenced on the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF. In this study, a diesel passenger vehicle was measured on condition of DPF regeneration and no regeneration on a chassis dynamometer test bench. The particulate matter (PM) emission from this vehicle was measured by its number, size and mass measurement. The mass of the total PM was evaluated with the standard gravimetric measurement method while the total number and size concentrations were measured on a NEDC driving cycle using Condensation Particle Counter (CPC) and EEPS. Total number concentration by CPC was $1.5{\times}10^{1l}N/km$, which was 20% of result by EEPS. This means about 80% of total particle emission is consist of volatile and small-sized particles(<22nm). During regeneration, particle emission was $6.2{\times}10^{12}N/km$, was emitted 400 times compared with the emission before regeneration. As for the particle size of $22{\sim}100nm$ was emitted mainly, showing peak value of near 40nm in size. This means regeneration decreased the mean size of particles. Regarding regeneration, PM showed no change while the particle number showed about 6 times difference between before and after regeneration. It seems that the regeneration influences on particle number emissions are related to DPF-fill state and filtration efficiency.
Kim, Sung Hee;Pae, Dong Sung;Kang, Tae-Koo;Kim, Dong W.;Lim, Myo Taeg
Journal of Electrical Engineering and Technology
/
v.13
no.6
/
pp.2468-2478
/
2018
We propose the Sparse Feature Convolutional Neural Network (SFCNN) to reduce the volume of convolutional neural networks (CNNs). Despite the superior classification performance of CNNs, their enormous network volume requires high computational cost and long processing time, making real-time applications such as online-training difficult. We propose an advanced network that reduces the volume of conventional CNNs by producing a region-based sparse feature map. To produce the sparse feature map, two complementary region-based value extraction methods, cluster max extraction and local value extraction, are proposed. Cluster max is selected as the main function based on experimental results. To evaluate SFCNN, we conduct an experiment with two conventional CNNs. The network trains 59 times faster and tests 81 times faster than the VGG network, with a 1.2% loss of accuracy in multi-class classification using the Caltech101 dataset. In vehicle classification using the GTI Vehicle Image Database, the network trains 88 times faster and tests 94 times faster than the conventional CNNs, with a 0.1% loss of accuracy.
Transactions of the Korean Society of Automotive Engineers
/
v.17
no.1
/
pp.130-136
/
2009
A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.
Journal of the Korea Institute of Military Science and Technology
/
v.11
no.4
/
pp.141-148
/
2008
In this paper, we develop a detailed full dynamic model which includes various rough terrains for 6-wheel skid-steering mobile robot based on the real experimental autonomous vehicle called Dog-Horse Robot. We also design a co-simulation for performance comparison of path tracking algorithms. The control architecture in the co-simulation can be divided into two levels. The high level control is the closed-loop control of path tracking to follow a given path, and the low level is concerned about torque control of wheel motion. The simulation using the mechanical data of the Dog-Horse Robot is performed under the Matlab/Simulink environment. We also simulate and evaluate the performance of the model based adaptive controller.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.12
/
pp.8700-8706
/
2015
The first driving device of the power bogies for the Korean high-speed railway vehicle consists of the traction motor (TM) and the motor reduction gears unit (MRU). Although TM and MRU are the mechanically integrated structures, their time between overhauls (TBO) have two separate intervals due to different technical requirements(i.e. TBO of MRU: $1.8{\times}10^6km$, TBO of TM: $2.5{\times}10^6km$). Therefore, to reduce the unnecessary number of preventive maintenances, it is important to evaluate the optimal TBO with a viewpoint of reliability-center maintenance towards cost-effective solution. In this study, derived from the field data in maintenance, fault tree analysis and failure rate of the subsystem considering criticality of the components are evaluated respectively. To minimize the conventional total maintenance cost, the same optimal TBO of the components is derived from genetic algorithm considering target reliability and improvement factor. In this algorithm, a chromosome which comprised of each individual is the minimum preventive maintenance interval. The fitness function of the individual in generation is acquired through the formulation using an inverse number of the total maintenance cost. Whereas the lowest common multiple method produces only a four percent reduction compared to what the existing method did, the optimal TBO of them using genetic algorithm is $2.25{\times}10^6$km, which is reduced to about 14% comparing the conventional method.
In this paper, we propose an image enhancement method for vehicle recorder by dividing the images into sub-images and finding local histograms of the sub-images. The proposed method includes the following steps. Firstly, the input image is divided into ($N{\times}M$) pieces. And the sub-images are used to make groups using the adjacent piece-images (eg. piece-imagei,j, piece-imagei,j+1, piece-imagei+1,j and piece-imagei+1,j+1). Secondly, the contrast enhancement processes are executed using the local histogram of the sub-images. Finally, overall image is reconstructed by using a transfer function that reflects the characteristics of the sub-image. The proposed method might achieve more enhanced images for vehicle recorder by suppressing excessive image contrast.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.