• Title/Summary/Keyword: $5-HT_2$ receptors

검색결과 77건 처리시간 0.017초

Synthesis and Inhibition Effects on 5-HT6 Receptor of Benzothiazole Derivatives

  • Hayat, Faisal;Yoo, Euna;Rhim, Hyewhon;ParkChoo, Hea-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.495-499
    • /
    • 2013
  • A novel series of aryl sulfonylpiperazine derivatives (5-15) were synthesized as 5-$HT_6$ ligands. In vitro assay was evaluated by measuring the 5-HT-induced $Ca^{2+}$ increases using HeLa cell line expressing the cloned human 5-$HT_6$ receptor, and the compound 13 showed potent 5-$HT_6$ receptor antagonistic effect with $IC_{50}$ value of 3.9 ${\mu}M$. Compound 13 also showed good selectivity on the 5-$HT_6$ over 5-$HT_4$ and 5-$HT_7$ receptors.

중추내로 투여한 $5-HT_{1A}$ 작동제에 의한 마취 가토에 있어서 신장기능의 변동 (Renal Functional Responses to a Centrally-administered $5-HT_{1A}$ Agonist in the Anesthetized Rabbits)

  • 임영채;김경심;국영종;고정태
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권3호
    • /
    • pp.315-323
    • /
    • 1997
  • Central tryptaminergic system has been shown to play an important role in the regulation of renal function: $5-HT_1(5-hydroxytryptamine_1)$ receptors might seem to mediate the diuresis and natriuresis, whereas the $5-HT_2\;and\;5-HT_3$ receptors mediate the antidiuretic and antinatriuretic effects. This study attempted to delineate the role of central $5-HT_{1A}$ subtype in the regulation of rabbit renal function by observing the renal effects of intracerebrovent-ricularly(icv)-administered PAPP(p-aminorhenylethyl-m-trifluoromethytphenyl piperazine, LY165163), a selective agonist of $5-HT_{1A}$ receptors. PAPP in doses ranging from 40 to $350{\mu}g/kg$ icv induced significantly diuresis, natriuresis, and kaliuresis, along with increased renal perfusion and glomerular filtration. Systemic blood pressure was also increased. Free water reabsorption$(T^cH_2O)$, a measure of ADH(antidiuretic hormone) secretion, was increased also. Intravenous $350{\mu}g/kg$ of PAPP elicited antidiuresis and antinatriuresis together with decreased blood pressure, thus indicating that the effects of icv PAPP were brought about through the central mechanisms, not by direct peripheral effects of the drug on kidney. Ketanserin, a selective $5-HT_2$ antagonist, $40{\mu}g/kg$ icv, did not affect the renal effects of the icv PAPP. Methysergide, a non-selective $5-HT_1$ antagonist, also did not block the renal functional responses by the icv PAPP. NAN-190, a $5-HT_{1A}$ antagonist, also did not antagonized the renal action of the icv PAPP. However the increased free water reabsorption was abolished by both methysergide or ketanserin pretreatment. The increments of blood pressure by icv PAPP was blocked only by NAN-190 pretreatment. These observations suggest that the central $5-HT_{1A}$ receptor might be involved in the central regulation of rabbit renal function by exerting the diuretic and natriuretic influences.

  • PDF

Serotonin (5-HT) Receptor Subtypes Mediate Regulation of Neuromodulin Secretion in Rat Hypothalamic Neurons

  • Chin, Chur;Kim, Seong-Il
    • Genomics & Informatics
    • /
    • 제5권2호
    • /
    • pp.77-82
    • /
    • 2007
  • Serotonin (5-HT), the endogenous nonselective 5-HT receptor agonist, activates the inositol-1,4,5-triphosphate/calcium $(InsP3/Ca^{2+})$ signaling pathway and exerts both stimulatory and inhibitory actions on cAMP production and neuromodulin secretion in rat hypothalamic neurons. Specific mRNA transcripts for 5-HT1A, 5-HT2C and 5-HT4 were identified in rat hypothalamic neurons. These experiments were supported by combined techniques such as cAMP and a $Ca^{2+}$ assays in order to elucidate the associated receptors and signaling pathways. The cAMP production and neuromodulin release were profoundly inhibited during the activation of the Gi-coupled 5-HT1A receptor. Treatment with a selective agonist to activate the Gq-coupled 5-HT2C receptor stimulated InsP3 production and caused $Ca^{2+}$ release from the sarcoplasmic reticulum. Selective activation of the Gs-coupled 5-HT4 receptor also stimulated cAMP production, and caused an increase in neuromodulin secretion. These findings demonstrate the ability of 5-HT receptor subtypes expressed in neurons to induce neuromodulin production. This leads to the activation of single or multiple G-proteins which regulate the $InsP3/Ca^{2+}/PLC-{\gamma}$ and adenyl cyclase / cAMP signaling pathways.

Effect of Snake Venom Toxin on Inhibition of Colorectal Cancer HT29 Cells Growth via Death Receptors Mediated Apoptosis

  • Shim, Yoon Seop;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제31권2호
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives : We investigated whether snake venom toxin(SVT) from Vipera lebetina turanica sensitizes HT29 human epithelial colorectal cancer cells to tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) induced apoptosis in cancer cells. Methods : Cell viability assay was used to assess the inhibitory effect of TRAIL on cell growth of HT29 human colorectal cancer cells. And 6-diamidino-2-phenylindole(DAPI), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay(TUNEL) staining assay were used to evaluate cell-apoptosis. Western blot analysis were conducted to observe apoptosis related proteins and death receptor. To assess whether the synergized inhibitory effect of SVT and TRAIL on reactive oxygen species(ROS) generation was reversed by strong anti-oxidative agent. Results : SVT with TRAIL inhibited HT29 cell growth different from TRAIL alone. Consistent with cell growth inhibition, the expression of TRAIL receptors; Expression of death receptor(DR)4 and DR5 was significantly increased and intrinsic pro-apoptotic cleaved caspase-3, -9 was subsequently increased together with increase of Bax/Bcl-2 ratio and extrinsic pro-apototic caspase-8 was also activated. In addition, the expression of anti-apoptotic survival proteins, a marker of TRAIL resistance(eg, cFLIP, survivin, X-linked inhibitor of apoptosis protein(XIAP) and Bcl-2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the ROS scavenger N-acetylcysteine abolished the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the intrinsic pro-apoptotic caspase-3 and-9. Conclusion : The collective results suggest that SVT facilitates TRAIL-induced apoptosis in $HT_{29}$ human epithelial colorectal cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 and consecutive induction of bilateral apoptosis via regulating apoptosis related proteins.

Potentiation of the glycine response by serotonin on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in mice

  • Nguyen, Hoang Thi Thanh;Cho, Dong Hyu;Jang, Seon Hui;Han, Seong Kyu;Park, Soo Joung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.271-279
    • /
    • 2019
  • The lamina II, also called the substantia gelatinosa (SG), of the trigeminal subnucleus caudalis (Vc), is thought to play an essential role in the control of orofacial nociception. Glycine and serotonin (5-hydroxytryptamine, 5-HT) are the important neurotransmitters that have the individual parts on the modulation of nociceptive transmission. However, the electrophysiological effects of 5-HT on the glycine receptors on SG neurons of the Vc have not been well studied yet. For this reason, we applied the whole-cell patch clamp technique to explore the interaction of intracellular signal transduction between 5-HT and the glycine receptors on SG neurons of the Vc in mice. In nine of 13 neurons tested (69.2%), pretreatment with 5-HT potentiated glycine-induced current ($I_{Gly}$). Firstly, we examined with a $5-HT_1$ receptor agonist (8-OH-DPAT, $5-HT_{1/7}$ agonist, co-applied with SB-269970, $5-HT_7$ antagonist) and antagonist (WAY-100635), but $5-HT_1$ receptor agonist did not increase $I_{Gly}$ and in the presence of $5-HT_1$ antagonist, the potentiation of 5-HT on $I_{Gly}$ still happened. However, an agonist (${\alpha}$-methyl-5-HT) and antagonist (ketanserin) of the $5-HT_2$ receptor mimicked and inhibited the enhancing effect of 5-HT on $I_{Gly}$ in the SG neurons, respectively. We also verified the role of the $5-HT_7$ receptor by using a $5-HT_7$ antagonist (SB-269970) but it also did not block the enhancement of 5-HT on $I_{Gly}$. Our study demonstrated that 5-HT facilitated $I_{Gly}$ in the SG neurons of the Vc through the $5-HT_2$ receptor. The interaction between 5-HT and glycine appears to have a significant role in modulating the transmission of the nociceptive pathway.

5-Hydroxytryptamine Generates Tonic Inward Currents on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

  • Shahi, Pawan Kumar;Choi, Seok;Zuo, Dong Chuan;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Lee, Jun;Kim, Young-Dae;Park, Chan-Guk;Kim, Man-Yoo;Shin, Hye-Rang;Oh, Hyun-Jung;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권3호
    • /
    • pp.129-135
    • /
    • 2011
  • In this study we determined whether or not 5-hydroxytryptamine (5-HT) has an effect on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of 5-HT on pacemaker activities were investigated using a whole-cell patch-clamp technique, intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) analysis, and RT-PCR in ICC. Exogenously-treated 5-HT showed tonic inward currents on pacemaker currents in ICC under the voltage-clamp mode in a dose-dependent manner. Based on RT-PCR results, we found the existence of 5-$HT_{2B,\;3,\;4,\;and\;7}$ receptors in ICC. However, SDZ 205557 (a 5-$HT_4$ receptor antagonist), SB 269970 (a 5-$HT_7$ receptor antagonist), 3-tropanylindole - 3 - carboxylate methiodide (3-TCM; a 5-$HT_3$ antagonist) blocked the 5-HT-induced action on pacemaker activity, but not SB 204741 (a 5-$HT_{2B}$ receptor antagonist). Based on $[Ca^{2+}]_i$ analysis, we found that 5-HT increased the intensity of $[Ca^{2+}]_i$. The treatment of PD 98059 or JNK II inhibitor blocked the 5-HT-induced action on pacemaker activity of ICC, but not SB 203580. In summary, these results suggest that 5-HT can modulate pacemaker activity through 5-$HT_{3,\;4,\;and\;7}$ receptors via $[Ca^{2+}]_i$ mobilization and regulation of mitogen-activated protein kinases.

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young;Kang, Young Mi;Lee, Bae-Jin;Chung, Sun Yong;Kim, Kyung-Soo;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.479-485
    • /
    • 2015
  • This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.

Calcium Signaling of Dioleoyl Phosphatidic Acid via Endogenous LPA Receptors: A Study Using HCT116 and HT29 Human Colon Cancer Cell Lines

  • Chang, Young-Ja;Kim, Hyo-Lim;Sacket, Santosh J.;Kim, Kye-Ok;Han, Mi-Jin;Jo, Ji-Yeong;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제15권3호
    • /
    • pp.150-155
    • /
    • 2007
  • In the present study, we have tested the effect of dioleoyl phosphatidic acid (PA) on intracellular $Ca_{2+}$ concentration ($[Ca^{2+}]_{i}$) in two human colon cancer cell lines (HCT116 and HT29). PA and lysophosphatidic acid (LPA), a bioactive lysolipid, increased $[Ca^{2+}]_{i}$ in both HCT116 and HT29 cell lines. Increases of $[Ca^{2+}]_{i}$ by PA and LPA were more robust in HCT116 cells than in HT29 cells. A specific inhibitor of phospholipase C (U73122), however, was not inhibitory to the cell responses. Pertussis toxin, a specific inhibitor of $G_{i/o}$ type G proteins, however, had an inhibitory effect on the responses except for an LPA-induced one in HT29 cells. Ruthenium red, an inhibitor of the ryanodine receptor, was not inhibitory on the responses, however, 2-APB, a specific inhibitor of inositol 1,4,5-trisphosphate receptor, completely inhibited both lipid-induced $Ca^{2+}$ increases in both cell types. Furthermore, by using Ki16425 and VPC32183, two structurally dissimilar specific antagonists for $LPA_{1}/LPA_{3}$ receptors, an involvement of endogenous LPA receptors in the $Ca^{2+}$ responses was observed. Ki16425 completely inhibited the responses but the susceptibility to VPC32183 was different to PA and LPA in the two cell types. Expression levels of five LPA receptors in the HCT116 and HT29 cells were also assessed. Our data support the notion that PA could increase $[Ca^{2+}]_{i}$ in human colon cancer cells, probably via endogenous LPA receptors, G proteins and $IP_{3}$ receptors, thereby suggesting a role of PA as an intercellular lipid mediator.

3D Structure Prediction of Human 5-Hydroxytryptamine Receptor 7 (5-HT7R)

  • Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제11권2호
    • /
    • pp.87-92
    • /
    • 2018
  • 5-Hydroxytryptamine receptor 7 ($5-HT_7R$) is one of G-Protein coupled receptors, which is found to be involved in the pathophysiology of various neurological disorders including depression, sleep disorders, memory deficiency and neuropathic pain. After activation of $5-HT_7R$ by serotonin, it activates the production of the intracellular signaling molecule cyclic AMP. The availability of 3D structure of the receptor would enhance the development of new drugs. Hence, in the present study, homology modelling of human 5-hydroxytryptamine receptor 7 ($5-HT_7R$) was performed using comparative modelling (Easy Modeller) and threading (I-TASSER) approaches. The generated models were validated using Ramachandran plot and ERRAT plot and the best models were selected based on the validation results. The 3D model developed here could be useful for identifying crucial residues and further docking study.

3D QSAR Study of 2-Methoxyphenylpiperazinylakanamides as 5-Hydroxytryptamine (Serotonin) Receptor 7 Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.128-135
    • /
    • 2016
  • 5-hydroxytryptamine (serotonin) receptor ($5-HT_7R$) 7 is one of G-Protein coupled receptors, which is activated by the neurotransmitter Serotonin. After activation by serotonin, $5-HT_7$ activates the production of the intracellular signaling molecule cyclic AMP. $5-HT_7$ receptor has been found to be involved in the pathophysiology of various disorders. It is reported that $5-HT_7$ receptor antagonists can be used as antidepressant agents. In this study, we report the important structural and chemical parameters for 2-methoxyphenylpiperazinylakanamides as $5-HT_7R$ inhibitors. A 3D QSAR study based on comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with $q^2$ of 0.594 with 6 components, $r^2$ of 0.986, Fisher value as 60.607, and an estimated standard error of 0.043. The predictive ability of the test set was 0.602. Results obtained the CoMFA models suggest that the data are well fitted and have high predictive ability. The contour maps are generated and studied. The contour analyses may serve as tool in the future for designing of novel and more potent $5-HT_7R$ derivatives.