• Title/Summary/Keyword: $45^{\circ}$ Inclined Hot-Wire

Search Result 8, Processing Time 0.02 seconds

Experimental Study on the Aerodynamic Interaction of the Rotor and Stator for the Ducted fan UAV (덕티드 팬 무인기의 동익과 정익 공력상호작용에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.387-391
    • /
    • 2009
  • The experimental study on the ducted fan for the propulsion system of a small UAV has been performed. In this paper, to investigate the three-dimensional unsteady flow field characteristics of the ducted fan, it was measured by using a $45^{\circ}$ inclined hot-wire from hub to tip at inlet, behind the rotor and outlet of the ducted fan. The hot-wire signal data was acquired at fixed yaw angle. The data was averaged by using the PLEAT (Phase Locked Ensemble Averaging Technique), and then three of non-linear equations were solved simultaneously by using the Newton-Rhapson numerical method. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential contour plot.

  • PDF

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

Experimental Study on the Unsteady Flow under Various Operating Conditions of a Counter Rotating Axial Flow Fan (엇회전식 축류팬의 작동조건 변화에 따른 비정상 유동에 관한 실험적 연구)

  • Kang, Hyun-Koo;Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1389-1394
    • /
    • 2004
  • Experiments were done for the unsteady flow in a counter rotating axial flow fan near peak efficiency and stall point. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional passage flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Comparison of flow characteristics between two different operating conditions such as tip vortex, secondary flow and turbulence intensity were performed through the analyses of axial, radial and tangential velocity distributions. As a result, tip vortex and secondary flows are enforced and measured obviously at stall point.

  • PDF

Experimental Study on the Three Dimensional Unsteady Flow in a Counter Rotating Axial Flow Fan (엇회전식 축류팬의 3 차원 비정상 유동에 관한 실험적 연구)

  • Park, Hyun-Soo;Cho, Lee-Sang;Kang, Hyun-Koo;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.822-827
    • /
    • 2003
  • Experiments were done for the three dimensional unsteady flow in a counter rotating axial flow fan under stable operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. Swirl velocity, which was generated by the front rotor, was recovered in the form of static pressure rise by the rear rotor except for hub and tip regions.

  • PDF

Experimental Study on the Three Dimensional Unsteady Flow in a Counter-Rotating Axial Flow Fan (엇회전식 축류팬의 3차원 비정상 유동에 관한 실험적 연구)

  • Park, Hyun-Soo;Cho, Lee-Sang;Cho, Jin-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1005-1014
    • /
    • 2004
  • Experiments were done for the three dimensional unsteady flow in a counter-rotating axial flow fan under peak efficiency operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the 45$^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. It has been found that the radial and tangential velocity components disappeared, while the axial velocity component highly increased as soon as the tip vortex was generated. It has been observed that secondary flow and turbulence intensity which were increased by the front rotor were dissipated passing through the rear rotor. As the result the energy loss of the counter rotating axial flow fan decreased at the downstream of rear rotor. Also, it has been verified that tip vortex pattern of the rear rotor was dampened because the tip vortex generated by front rotor was mixed with that of the rear rotor.

Experimental Study on the Unsteady Flow Characteristics of the Counter-Rotating Axial Flow Fan (엇회전식 축류팬의 비정상 유동특성에 관한 실험적 연구)

  • Cho, Lee-Sang;Choi, Hyun-Min;Kang, Jeong-Seek;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.305-310
    • /
    • 2007
  • For the understanding of the complex flow characteristics in the counter-rotating axial flow fan, it is necessary to investigate the three-dimensional unsteady flow fields in the counter-rotating axial flow fan. This information is also essential for the prediction of the aerodynamic and acoustical characteristics of the counter-rotating axial flow fan. Experimental study on the three-dimensional unsteady flow in the counter-rotating axial flow fan is carried out at the design point(operating condition). Three-dimensional unsteady flow fields in the counter rotating axial flow fan are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. Three-dimensional unsteady flow fields in the counter-rotating axial flow such as the wake, the tip vortex and the tip leakage flow are shown the form of the velocity vectors and the velocity contours.

  • PDF

An Experimental Study on the Turbulent Flow of a 45$^{\circ}C$ Free Cross Jet (450自由衝突 噴射 의 亂流流動 에 관한 實驗的 硏究)

  • 노병준;김장권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 1984
  • Turbulent jet flow has been studied in many ways; a plane jet, a rectangular jet, an annular jet, a round jet, a wall jet, a parallel jet, a valve jet, a cross jet, a slit jet and etc. In this report, a 45.deg. cross jet flow was tried by using two same dimensioned nozzels(dia..phi.20)which were set up at the exit of the subsonic wind tunnel. Each jet flows to the direction of 22.5.deg. to the axis of downstream of the mixed flow. The centerline of each jet meets at the distance of 217.3mm and their mixing flow could be imagined to develop beyond that distance, so the measurement was effectuated at X/X$_{0}$=1.2-1.5. The section of the mixed flow a elliptic circle which is formed by the 22.5.deg. inclined flows to the X direction. This experimental study aimed at the investigation of the turbulent mixing process of two jets; the mean velocities, the turbulent shear stresses, the correlation coefficients, and the momentum were respectively measured. The mean velocity distribution profiles of the down-stream component measured in the Y direction coincide well with the empirical equation of Gortler and those measured in the Z direction agree with the equation of H. Schlichting. Other mean velocities V over bar and W over bar components were randomly distributed. The higher values with same order of the intensity of turbulence were largely distributed at the central part of the flow. The momentum was decreased up to 70% by the shock losses and the development of intense turbulences, but it kept its value constantly beyond X/d=14. Two-channel hot-wire anemometer systems (model 1050 series), X-type hot-wire made of tungsten (dia. .phi.e.mu.m, long 3mm, model 0252 T5), a computer(model HP 9845B0, and a plotter (model HP 9872C) were used for the experiments and the analyses.s.

A Study on Turbulence Flow Characteristics at the Spark Plug Location in S.I. Engine (가솔린기관의 점화플러그 위치에서 난류유동 특성에 관한 연구)

  • 정연종;조규상;김원배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2423-2430
    • /
    • 1994
  • Several factors of the efficient combustion process are shape of combustion chamber, position of spark plug, turbulence flow and so on. the shape of combustion chamber and position of spark plug are constrained to geometrically, and then it could not make a change the shape easily. But the turlence flow in combustion chamber have a great influence on combustion phenomena, and which is much easier to control relatively. And since characteristics of turbulence flow would be very important to the stability of combustion and performances, This study is also essential to future engine-low emission and lean burn engine. This paper shows that the visualization of the turbulence flow of single cylinder engine by using 2way, $45^{\circ}$ inclined and 2 channel hot wire probe through the park plug hole. We also study the characteristics of turbulence flow by means of ensemble averaged mean velocity, turvulence intensity and integral length scale.