A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.
The emission of $NO_{x}$ during coal combustion is a major reason of environment impact. $NO_{x}$ is an acid rain precursor and participates in the generation of smog through ozone production. $NO_{x}$ can be divided into thermal $NO_{x}$, fuel $NO_{x}$ and prompt $NO_{x}$. Thermal $NO_{x}$ is formed in a highly temperature condition dependent. Fuel $NO_{x}$ is dependent on the local combustion characteristics and initial concentration of nitrogen bound compound, while prompt $NO_{x}$ is formed in a significant quantity in some combustion environments, such as low temperature and short residence times. This paper presents numerical simulation of the flow and combustion characteristics in the furnace of a tangential firing boiler of 500MW with burners installed at the every comer of the furnace. The purpose of this paper is to investigate the reduction of $NO_{x}$ emission in a 500MW pulverized coal tangential firing boiler with different OFA's and burner angles. Calculations with different air flow rates of over fired air(OFA) and burner angles are performed.
We presented the methods calculating the reduction efficiency of nitrogen oxide for the low $NO_x$ burner as the pollution prevention facilities. The standard $NO_x$ concentration was used on the emission factor of LNG, $3.7g/m^3$. The $NO_x$ reduction efficiency based on the $NO_x$ concentration was presented and the relationships between the $NO_x$ concentration and the emission factor or the specific heat emission factor were derived. These results could be accurately reflected on calculating the amount of the nitrogen oxide emissions. In addition, according to the arrangement of the low $NO_x$ burners the methods of applying their $NO_x$ reduction efficiency were proposed. The $NO_x$ reduction efficiency for the facilities consisting of the low $NO_x$ burners and the non-low $NO_x$ burners could be estimated with information about the reduction efficiency of each low $NO_x$ burners, the fuel consumption rate, and the heating value of fuel.
This study was carried out to determine an optimal lean $NO_x$ trap (LNT) regeneration condition based on a $NO_x$ storage fraction. The LNT regeneration was performed by an in-cylinder post fuel injection method. A $NO_x$ storage fraction is defined by the ratio of current cumulated $NO_x$ amount in the LNT to the $NO_x$ storage capacity: 0 means empty and 1 fully loaded. In this study five engine operating conditions were chosen to represent the New European Driving Cycle. With various $NO_x$ storage fractions each engine operating condition, the LNT regeneration was executed and then $NO_x$ conversion efficiency, additional fuel consumption, CO and THC slip, peak catalyst temperature were measured. The results showed that there exist an optimal condition to regenerate the LNT, eg. 1500 rpm 6 bar BMEP with below 0.7 $NO_x$ storage fraction in this experimental constraint.
Diesel $NO_x$ reduction by $NH_3$-SCR in conjunction with the effective oxidation precatalyst was analytically investigated. Physicochemical processes in regard to $NH_3$-SCR $NO_x$ reduction and catalytic NO-$NO_2$ conversion are formulated with detailed descriptions on the commanding reactions. A unified model is correctly validated with experimental data in terms of extents of $NO_x$ reduction by SCR and NO-$NO_2$ conversion by DOC. The present deterministic model based on the rate expressions of Langmuir-Hinshelwood reaction scheme finds a conversion extent directly. A series of numerical experiments concomitant with parametric analysis of the $NO_x$ reduction was conducted. $NO_x$ reduction is promoted in proportion to DOC volume ar lower temperatures and an opposite holds at lower space velocity and intermediate temperatures. $NO_x$ conversion is weakly correlated to the space velocity and the DOC volume at higher exhaust temperature. In DOC-SCR system, the $NO_x$ reduction efficiency depends on the $NH_3/NO_x$ ratio.
A mathematical modeling of $NO_x$ reduction in $NH_3$-SCR process is conducted. The present deterministic model solves one-dimensional conservation equations of mass and species concentrations for channel flows and the catalytic reaction. NO and NO_2$ reactions by the vanadium catalyst in the presence of $NH_3$ are calculated with the rate expressions of Langmuir-Hinshelwood scheme. The modeling was validated with extensive empirical data regarding $NO_x$ reduction efficiency. Analysis of De-$NO_x$ sensitivity conducted with regard to oxygen and water yielded highly accurate prediction over a wide range of $NO_2/NO_x$ ratios from 0 to 1 in a temperature range of $200^{\circ}C{\sim}550^{\circ}C$. The $NO_x$ reduction largely depends on $NO_2/NO_x$ ratio at temperatures lower than $300^{\circ}C$. NO reduction efficiency is significantly augmented with increasing in $NH_3$/NO ratio at higher temperatures, whereas rather insensitive to the $NH_3$/NO ratio at lower temperatures.
중급규모의 가스화 복합/열병합 플랜트의 공정설계와 성능평가를 수행하였다. 설계된 플랜트 공정을 바탕으로 가스터빈 연소기에 비포화 또는 포화된 질소를 분사시키거나 가스연료를 포화시키는 여러 가지 $NO_x$ 저감 기술들을 시도하여, $NO_x$ 저감 기법이 $NO_x$ 배출량에 미치는 영향과 플랜트의 출력, 효율 및 안정성에 미치는 영향을 동시에 검토하였다. 가스 연료의 포화보다는 질소의 분사를 통한 $NO_x$ 저감효과가 더욱 현저하며, 질소분산 시 포화된 질소를 사용하는 경우 $NO_x$ 저감 효과는 더욱 향상되었다. 또한 $NO_x$ 저감 기법의 적용은 $NO_x$ 배출량의 감소와 더불어 플랜트의 출력 및 효율 향상도 수반하나, 가스터빈의 불안정한 운전을 초래할 수도 있었다.
본 연구에서는 소규모 실험장치(6.6kW)를 이용하여 $NO_x$ 저감방법 중에 가장 효율적인 방법이라 알려진 공기 및 연료의 단계적 연소법 (air and fuel staged combustion)을 이용하여, Fuel-N을 함유하고 있는 연료의 $NO_x$ 의 배출특성을 규명함 은 물론 최적 저 $NO_x$ 연소기술 향상방안을 제시하고자 한다.
In this study we designed a lean $NO_x$ trap (LNT) model with $GT-POWER^{TM}$ program and then the LNT model was compared to the bench flow reactor test results. This model consists of 9 kinetic reactions to represent the main steps of NO oxidation, $NO_x$ adsorption, $NO_x$ release and then its reduction. The comparison was performed on the operating conditions at the space velocity of 50,000 1/hr and 80,000 1/hr with the temperature range of $200^{\circ}C{\sim}500^{\circ}C$ with the even spaced temperature step of $50^{\circ}C$. The experimental results show that the $NO_x$ conversion efficiency was enhanced by the temperature up to $350^{\circ}C$ and then decayed at higher temperatures. The LNT model predicts the similar trend of the $NO_x$ conversion efficiency to the experimental results below $350^{\circ}C$, but overestimates above $350^{\circ}C$. This overestimation comes from the higher reduction efficiency which was obtained by the different reduction gas composition such as $C_3H_6$ in the model to replace $CH_4$, $C_2H_4$ in the bench test.
This experimental study has been mainly motivated to obtain generally applicable design correlation for the front mixing premix combustor. The design concept of the front mixing premix combustor is to minimize thermal $NO_x$ and prompt $NO_x$ formation by maintaining low peak flame temperature, and nearly uniform flame temperature through rapid mixing process near the ignition point. The present experimental results clearly indicate that the front mixing premix combustor yields the $NO_x$ level lower than 43 ppm $NO_x$ emissions and the nearly uniform temperature distribution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.