• Title/Summary/Keyword: ${LiMn_2}{O_4}$

Search Result 354, Processing Time 0.025 seconds

The Synthesis of LiMn$_2$O$_4$by sol-gel method and properties as electrode materials for lithium secondary battery (Sol-Gel 법에 의한 LiMn$_2$O$_4$의 합성 및 리튬이차전지용 전극물질로의 특성)

  • 이진식;박용성;우제완
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • The spinel structured $LiMn_2O_4$was obtained by two consecutive heat treatment on xerogel; the first heat treatment was at $150^{\circ}C$ and the second at $350^{\circ}C$ was obtained by sol-gel process using an aqueous solution of lithium hydroxide and manganese acetate. The synthesized $LiMn_2O_4$ by the sol-gel process showed a discharge capacity of 88~56 mAh/g after 15 cycles in Li/lM $LiClO_4$(in PC)/$LiMn_2O_4$at a current density of 0.25 mA/$\textrm{cm}^2$ and the voltage ranged 3.5 V to 4.3 V. For the second heat treatment above $350^{\circ}C$, $Mn_2O_3$was formed as a by-product during the synthesis of $LiMn_2O_4$. The heat treatment at $500^{\circ}C$, for example, showed a lower discharge capacity 81~47 mAh/g, after the 15 charge/discharge cycles. The lower capacity was due to the increment of $Mn^{3+}$ ion and this phenomenon was in agreement with the Jahn-Teller distortion.

  • PDF

Electrochemical Properties of LiMn1.92Co0.08O4 and LiNi0.7Co0.3O2 Mixtures Prepared by a Simplified Combustion Method (단순화한 연소법에 의해 합성한 LiMn1.92Co0.08O4와 LiNi0.7Co0.3O2 혼합물의 전기화학적 특성)

  • Song, Myoungyoup;Kwon, IkHyun;Kim, Hunuk
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.735-741
    • /
    • 2004
  • $LiMn_{1.92}Co_{0.08}O_4$ and $LiNi_{0.7}Co_{0.3}O_2$ synthesized by a simplified combustion method had good electrochemical properties. Mixtures $LiMn_{1.92}Co_{0.08}O_4$-x wt$\%$ $LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41, and 47) were prepared by milling for 30 min and their electrochemical properties were investigated. The electrode with x=9 had a relatively large first discharge capacity (109.9 mAh/g at 0.1 C) and good cycling performance. The decrease in the discharge capacity of the mixture electrodes with cycling is considered to result mainly from the degradation of $LiNi_{0.7}Co_{0.3}O_2$, caused by coating of $LiNi_{0.7}Co_{0.3}O_2$ with Mn dissolved from $LiMn_{1.92}Co_{0.08}O_4$.

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide (다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구)

  • Lee, Jong-Moon;Kim, Joo-Seong;Hong, Soon-Kie;Lee, Jeong-Jin;Ahn, Han-Cheol;Cho, Won-Il;Mho, Sun-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.172-180
    • /
    • 2012
  • The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

Characteristics of LiMn2O4 Cathode Material Prepared by Precipitation-Evaporation Method for Li-ion Secondary Battery (침전-증발법에 의해 제조된 리튬이온 2차 전지용 LiMn2O4 양극재료의 특성)

  • Kim, Guk-Tae;Yoon, Duck-Ki;Shim, Young-Jae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.712-717
    • /
    • 2002
  • New wet chemical method so called precipitation-evaporation method was suggested for preparing spinel structure lithium manganese oxide ($LiMn_2$$O_4$) for Li ion secondary battery. Using precipitation-evaporation method, $LiMn_2$$O_4$ cathode materials suitable for Li ion secondary batteries can be synthesized. Single spinel phase $LiMn_2$$O_4$ powder was synthesized at lower temperature compared to that of prepared by solid-state method. $LiMn_2$$O_4$ powder prepared by precipitation-evaporation method showed uniform, small size and well defined crystallinity particles. Li ion secondary battery using $LiMn_2$$O_4$ as cathode materials prepared by precipitation-evaporation method and calcined at $800^{\circ}C$ showed discharge capacity of 106.03mAh/g and discharge capacity of 95.60mAh/g at 10th cycle. Although Li ion secondary battery showed somewhat smaller initial capacity but good cyclic ability. It is suggested that electro-chemical properties can be improved by controlling particle characteristics by particle morphology modification during calcination and optimizing Li ion secondary battery assembly conditions.

Charge-discharge Properties by Cut-off Voltage Changes of Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$ and ${LiMn_2}{O_4}$in Li-ion Secondary Batteries (코발트와 니켈로 치환한 리튬이온 이차전지 Cathode, Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$${LiMn_2}{O_4}$의 Cut-off 전압 변화에 따른 충방전 특성)

  • 유광수;박재홍;이승원;조병원
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.424-430
    • /
    • 2001
  • Cut-off 전압 변화에 따른 충방전 특성을 알아보기 위하여 Mn을 다른 전이 금속이 Co와 Ni로 소량 치환시킨 Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$(M=Ni, Co, $\delta$=0, 0.05, 0.1, 0.2)를 고상 반응법으로 80$0^{\circ}C$에서 48시간 동안 유지하여 합성하였다. 충방전의 cut-off 전압은 2.5~4.4V, 3.0~4.5V, 3.5~4.5V, 3.5V~4.7V의 네 가지 전압범위고 하였다. 충방전 실험결과, Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$의 용량은 각각 Co와 Ni의 $\delta$=0.1에서 최대를 보였다. Co 치환 조성 재료와 순물질 모두에서 최대의 용량을 보인 cut-off 전압대는 3.5~4.5V 이었는데 이때의 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$와 LiM $n_2$ $O_4$의 초기 충전용량과 초기 방전용량은 각각 118, 119mAh/g과 114, 104mAh/g 이었다. 또한 모든 cut-off 전압대에서 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$는 순수한 LiM $n_2$ $O_4$보다 더 높은 용량과 우수한 싸이클 성능을 보였으며 그 결과는 밀착형 전지구성에서도 일치하였다.하였다.

  • PDF

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.

Characteristics of $\textrm{LiMn}_{2}\textrm{O}_{4}$ Cathode Material Prepared by Sol-Gel and Solid State Methods for Li Ion Battery (졸-겔법과 고상반응법에 의해 제조된 Li Ion 전지용 $\textrm{LiMn}_{2}\textrm{O}_{4}$ 정극재료 특성)

  • Kim, Guk-Tae;Sim, Yeong-Jae
    • Korean Journal of Materials Research
    • /
    • v.7 no.6
    • /
    • pp.529-535
    • /
    • 1997
  • Li ion전지용 LiMn$_{2}$O$_{4}$분말을 졸-겔법과 고상반응법으로 제조하여 분말의 특성과 전지의 특성을 비교하였다. 졸-겔법에 의해 제조된 LiMn$_{2}$O$_{4}$분말은 고상반응법에 의해 제조된 분말보다 낮은 온도에서 합성이 가능하고, 균질하고 작은 입자들로 구성되었으며, Li stoichiometry가 우수하여 전지의 방전용량이 크나 양이온 혼합도가 높아 전지의 내부저항이 크게 나타났다. 졸-겔법은 높은 Li stoichiometry와 균질한 입자 크기를 갖는 LiMn$_{2}$O$_{4}$분말 제조에 적당한 것으로 생각되며, 전지의 내부저항 문제는 분말의 하소온도와 냉각속도의 조절에 의해 가능할 것으로 판단된다.

  • PDF

Fabricatoin and electrochemical property of 3-dimesional $LiMn_2O_4$ thin film (3차원 구조의 $LiMn_2O_4$ 박막전극의 제조 및 전기화학적 특성)

  • Park, Bo-Gun;Ryu, Jea-Hyeok;Park, Yong-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.64-65
    • /
    • 2008
  • 3D microbattery에 사용할 수 있는 $LiMn_2O_4$ 3차원 박막전극을 제조하여 그 전기화학적 특성을 관찰하였다. 3차원 구조의 형성을 위하여 먼저 polystyrene(PS) microsphere를 platinum이 증착된 Si/$SiO_2$ 기판위에 dip-coating 방식으로 코팅시켜 template로 사용하였다. 그 위에 sol-gel법을 이용, 박막을 형성시킨 후 template 를 제거하는 방식으로 $LiMn_2O_4$ 3차원 박막전극을 형성하였는데 이때 solution은 Lithium acetylacetonate[$LiCH_3CO-CHCOCH_3$], Manganese(III) acetylacetonate [Mn$(CH_3COCHCOCH_3)_3$]를 source 물질로 1-butanol과 acetic acid를 solvent로 활용하여 제조하였다.

  • PDF

Charge/discharge capacity and cycle salability of LiMn$_2$O$_4$cathode by sorts and volume of conductive agent (도전재 종류와 양에 따른 LiMn$_2$O$_4$정극의 충방전 용량 및 Cycle 안정성)

  • 정인성;박계춘;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.275-278
    • /
    • 1997
  • We investigated effectness of sort and volume of conductive agent to charge/discharge capacity of LiMn$_2$O$_4$. LiMn$_2$O$_4$is prepared by reacting stoichiometric mixture of LiOH . $H_2O$ and MnO$_2$(mole ratio 1 : 2) and heating at 80$0^{\circ}C$ for 24h, 36h, 48h, 60h and 72h. All LiMn$_2$O$_4$cathode active materials show spinel structure. Cathode active materials calcined at 80$0^{\circ}C$ for 36h, charge/discharge characteristics and cycle stability have remarkable advantages. Used that super-s-black and 20wt% as conductive agent in LiMn$_2$O$_4$, it is excellent than property of cathode used Acetylene black or mixture of Super-s-black and acetylene black at charge/discharge capacity and cycle stability. Also, specific efficiency of cathode is excellent as over 98% and that of first cycle is excellent as 92%.

  • PDF

Synthesis and Electrochemical Performance of Mesoporous Hollow Sphere Shape LiMn2O4 using Silica Template (실리카 템플레이트를 이용하여 다공성 중공형태를 갖는 LiMn2O4 합성 및 전기화학적 특성 연구)

  • Ryu, Seong-Hyeon;Ryu, Kwang-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.184-190
    • /
    • 2011
  • $LiMn_2O_4$ with mesoporous hollow sphere shape was synthesized by precipitation method with silica template. The synthesized $LiMn_2O_4$ has nanosized first particle and mesoporous hollow sphere shape. Silica template was removed by chemical etching method using NaOH solution. When the concentration of NaOH solution was increased, first particle size of manganese oxide was decrease and confirmed mesoporous hollow shpere shape. X-ray diffraction(XRD) patterns revealed that the synthesized samples has spinel structure with Fd3m space group. In case the ratio of silica and maganese salt increased, the size of first particles was decreased. The tetragoanal $LiMn_2O_4$ with micron size was synthesized at ratio of silica and manganese salt over 1 : 9. The prepared samples were assembled as cathode materials of Li-ion battery with 2032 type coin cell and their electrochemical properties are examined by charge-discharge and cyclic performance. Electrochemical measurements show that the nano-size particles had lower capacity than micron-size particles. But, cyclic performance of nano-size particles had better than that of micron-size particles.