• Title/Summary/Keyword: ${Al_2}{O_3}-{ZrO_2}$

Search Result 497, Processing Time 0.031 seconds

Polarized Raman Scattering Study of Highly(111)-oriented PZT Films in the Rhombohedral-Phase Field

  • 이현정;박정환;장현명
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.174-174
    • /
    • 2003
  • Highly (111)-oriented PZT [Pb(Zrl-xTix)O3] thin films in the Zr-rich rhombohedral phase-field were successfully fabricated on Pt(111)/Ti/SiO2/Si substrates by combining PLD method with sol-gel process. These highly (111)-oriented films can be used as model systems for polarized Raman scattering study of PZT in the rhombohedral-Phase field because the (111)-direction is the principal off-center axis of the rhombohedral ferroelectricity. For this purpose, we have fabricated PZT films employing two distinctive compositions : one with Zr/Ti = 90/10 (abbreviated as PZT90/10) and the other with Zr/Ti= 60/40 (PZT60/40). The PZT90/10 film belongs to the octahedrally distorted FR(LT) phase with a cell-doubled structure, whereas the PZT60/40 is in the high-temperature FR(HT) phase-field at room temperature. To clearly separate E(TO) phonon modes from Al(TO) modes of the (111)-oriented rhombohedral film, we have suitably devised Z(X,Y)Z and Z(X,X)Z backscattering geometries for E(TO) and Al (TO), respectively. The polarized scattering experiment demonstrated that both types of (111)-oriented rhombohedral films closely followed the Raman selection rule.

  • PDF

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

Effects of ceramic fillers on fracture resistance of barrier ribs of PDP

  • Baek, Se-Kyung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.552-554
    • /
    • 2004
  • Barrier ribs of plasma display panel (PDP) are glass matrix composite reinforced with alumina particles. Mechanical properties of the ribs are very crucial for the improvement in reliability of the panel as the ribs might fracture during transportation and service. In this study, therefore, the effects of filler type and content on the mechanical properties of the ribs were investigated. The fillers used include $Al_2O_3$, $TiO_2$, $ZrO_2$ and fused silica. The content of the filler was changed from 0 to 40 vol.%. The mechanical properties of the ribs measured were hardness, Young's modulus, fracture toughness, and 3-point bending modulus. The fracture toughness evaluated by micro-Vicker's indentation of the composites, in general, was measured to increase with the content of the filler until the sintered density does not decrease significantly. The improvement, however, was dependent on the type of filler employed.

  • PDF

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

Allanite Mineralization in the Mt. Eorae Area (어래산지역(御來山地域)의 갈렴석광상(褐簾石鑛床))

  • Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.151-166
    • /
    • 1989
  • A study of rare-earth mineralization in Kyemyungsan metasedimentary formation of Precambrian Ogcheon Group was carried out in the Mt. Eore Area near Choongju City based on the thorium (Th) and uranium (U) count data of geophysical airborne survey. This rare-earth mineralization was found in the magnetite-bearing banded quartizite which contains diagnostically some amounts of the metamict allanite. The brown colored allanites are distributed as aggregates of fine grains and sometimes banded structures with magnetite (inter growth) along the banding. The ore bed is displaced by the small faults and granite intrusions, and separated 5 ore blocks. The dimensions of the outcrop are 50-80 m in width, 1,500 m in length with the strike of $N70-80^{\circ}E$ and dip of $50-80^{\circ}NW$. In the field, the values of total gamma ray count of GR-101A scintillometer were able to measure more than 400 cps and maximum 1,500 cps, which data are coincided with the values of GR-310 gamma ray spectrometer and the gamma ray count of well logging data. The chemical compositions of the allanites from EPMA data are ranged from$\sum^{TR_2O_3}$ 18.57% to 26.00%, and the cerium oxides ($Ce_2O_3$) of allanite are positive relation with $La_2O_3$, MgO, FeO, MnO and negative relation with $SiO_2$, $Al_2O_3$, $Nd_2O_3$. The result of Neutron Activation Analysis (N.A.A.), Multi-Channel Analysis (M.C.A.) and wet chemistry of 25 outcrop samples for the elements of REE, Zr, U, Th shows strong anomalies. The good correlation elements with the thorium (Th) are the elements of La, Ce, LREE, $TR_2O_3$, Pr, Sm, Yb, Lu by the increasing order.

  • PDF

Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering (스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성)

  • Woo, Kee Do;Kim, Sang Mi;Kim, Dong Gun;Kim, Dae Young;Kang, Dong Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Petrochemistry and Environmental Geochemistry of Shale and Coal from the Daedong Supergroup, Chungnam Coal Field, Korea (충남탄전, 대동누층군의 셰일과 탄질암에 관한 암석화학 및 환경지구화학적 특성)

  • Lee, Chan Hee;Lee, Hyun Koo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • Characteristics of sedimentary rocks and enrichment of toxic elements in shale and coal from the Chungnam coal field were investigated based upon geochemistry of major, trace and rare earth elements. Shale and coal of the area are interbedded along the Traissic to the Jurassic Daedong Supergroup, which can be subdivided into grey shale, black shale and coal. The coal had been mined, however all the mines are abandonded due to the economic problems. The shale and coal are characterized by relatively low contents of $SiO_2$, and $Al_2O_3$ and high levels of loss-on-ignition (LOI), CaO and $Na_2O$ in comparison with the North American Shale Composite (NASC). Light rare earth elements (La, Ce, Yb and Lu) are highly enriched with the coal. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shale and coal range from 30.0 to 351.8 and from 4.2 to 106.8, which have partly negative correlations against $SiO_2/Al_2O_3$ (1.24 to 6.06), respectively. Those are suggested that controls of mineral compositions in shale and coal can be due to substitution and migration of those elements by diagenesis and metamorphism. Shale and coal of the area may be deposited in terrestrial basin deduced from high C/S (39 to 895) and variable composition of organic carbon (0.39 to 18.40 wt.%) and low contents of reduced sulfur (0.01 to 0.05 wt.%). These shale and coal were originated from the high grade metamorphic and/or igneous rocks, and the rare earth elements of those rocks are slightly influenced with diagenesis and metamorphism on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.38 to 0.85) and Th/U (3.6 to 14.6). Characteristics of trace and rare earth elements as Co/Th (0.07 to 0.86), La/Sc (0.31 to 11.05), Se/Th (0.28 to 1.06), V/Ni (1.14 to 3.97), Cr/V (1.4 to 28.3), Ni/Co (2.12 to 8.00) and Zr/Hf (22.6~45.1) in the shale and coal argue for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (1.36 to 21.68), Th/Yb (3.5 to 20.0) and La/Th (0.31 to 7.89), and their origin is explained by derivation from a mixture of mainly acidic igneous and metamorphic rocks. Average concentrations in the shale and coal are As=7.2 and 7.5, Ba=913 and 974, Cr=500 and 145, Cu=20 and 26, Ni=38 and 35, Pb=30 and 36, and Zn=77 and 92 ppm, respectively, which are similar to those in the NASC. Average enrichment indices for major elements in the shale (0.79) and coal (0.77) are lower than those in the NASC. In addition, average enrichment index for rare earth elements in coal (2.39) is enriched rather than the shale (1.55). On the basis of the NASC, concentrations of minor and/or environmental toxic elements in the shale and coal were depleted of all the elements examined, excepting Cr, Pb, Rb and Th. Average enrichment indices of trace and/or potentially toxic elements (As, Cr, Cu, Ni, Pb, U and Zn) are 1.23 to 1.24 for shale and 1.06 to 1.22 for coal, respectively.

  • PDF

Effect of Porous Substrate on the Strength of Asymmetric Structure

  • Kim, Chul;Park, Sang Hyun;Kim, Taewoo;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, we investigate the effect of porous $Al_2O_3$ substrate on the strengths of asymmetric structures after we prepare such a structure consisting of a dense $Li_2ZrO_3$ top layer and porous $Al_2O_3$ substrate layer. The porosity and elastic modulus of the substrate layer are controlled by sintering temperature, which has three values of 1150, 1250 and $1350^{\circ}C$. The porosity is controlled in the range of ~ 30-50 vol%, elastic modulus is ~80-120 GPa and elastic mismatch $E_s/E_c$ is ~ 0.6-1.0. Indentation stress-strain curves are obtained and analyzed to evaluate the yield stress of the asymmetric structure by concentrated local loading of WC balls. Conventional flexural strengths are also obtained to evaluate the strength of the asymmetric structure. The results indicate that the local yield strength of the asymmetric structure has mid-values between the top and the substrate layer; however, the flexural strength of the asymmetric structure are mainly influenced by elastic modulus and strength of the substrate.

세라믹막을 이용한 O/W 타입 에멀젼의 정밀여과

  • 현상훈;조철구;김계태;강환규
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.80-80
    • /
    • 1994
  • 세라믹막을 이용한 oil 폐수 처리의 기초 연구로서 정밀여과용 세라믹막의 제조와 oil(kerosene)-in-water 타입 에멀젼에 대한 막분리 효율이 연구되었다. 정밀여과 막으로서는 압출(extrusion)법으로 성형하여 제조한 $\alpha$-알루미나 튜브(평균 기공크기 0.9 $\mum$)와 이들 튜브(담체)내부에 $ZrO_2$ 또는 $Al_2O_3$ 다공성 박막을 코팅한 2층 구조의 복합막들을 사용하였다. 담체의 높은 투과율 ($1700 l/m^2\cdot h$ at $\Deltap = 1$ atm)을 어느정도 유지하면서 막분리 효율을 증대시킬 수 있는 새로운 슬러리 코팅법이 개발되엇으며, 코팅후 950-1300$\circ$C 에서 열처리한 코팅층의 두께와 평균 기공크기는 각각 5 - 20 $\mum$정도 이었다. 정밀여과막의 특성평가를 위하여 막 제조조건에 따른 코팅층의 두께 및 결함유무를 SEM으로 일단 관찰한 후에 Bubble Point Test와 Mercury Porosimeter를 이용하여 측정한 최대 및 평균 기공반경과 물의 투과량으로부터 막 전체에 대한 결함 유무와 결함의 허용한도등을 비교 분석하였다.

  • PDF

Composition-Some Properties Relationships of Non-Alkali Multi-component La2O3-Al2O3-SiO2 Glasses (무알칼리 다성분 La2O3-Al2O3-SiO2 유리의 조성과 몇 가지 물성의 관계)

  • Kang, Eun-Tae;Yang, Tae-Young;Hwang, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • Non-Alkali multicomponent $La_2O_3-Al_2O_3-SiO_2$ glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for thermal expansion coefficient, glass transition temperature, Young's modulus, Shear modulus and density are as follows: ${\alpha}(/^{\circ}C)=8.41{\times}10^{-8}x_1+5.72{\times}10^{-7}x_2+2.13{\times}10^{-7}x_3+1.09{\times}10^{-7}x_4+1.10{\times}10^{-7}x_5+1.15{\times}10^{-7}x_6+2.72{\times}10^{-8}x_7+2.41{\times}10^{-7}x_8-1.08{\times}10^{-8}x_1x_2+4.28{\times}10^{-8}x_3x_7-2.02{\times}10^{-8}x_3x_8-1.60{\times}10^{-8}x_4x_5-2.71{\times}10^{-9}x_4x_8-2.19{\times}10^{-8}x_5x_6-3.89{\times}10^{-8}x_5x_7$ $T_g(^{\circ}C)=7.36x_1+15.35x_2+20.14x_3+8.97x_4+13.85x_5+4.22x_6+28.21x_7-1.44x_8-0.84x_2x_3-0.45x_2x_5-1.64x_2x_7+0.93x_3x_8-1.04x_5x_8-0.48x_6x_8$ $E(GPa)=2.04x_1+14.26x_2-1.22x_3-0.80x_4-2.26x_5-1.67x_6-1.27x_7+3.63x_8-0.24x_1x_2-0.07x_2x_8+0.14x_3x_6-0.68x_3x_8+0.29x_4x_5+1.28x_5x_8$ $G(GPa)=0.35x_1+1.78x_2+1.35x_3+1.87x_4+9.72x_5+29.16x_6-0.99x_7+3.60x_8-0.48x_1x_6-0.50x_2x_5+0.08x_3x_7-0.66x_3x_8+0.94x_5x_8$ ${\rho}(g/cm^3)=0.09x_1+0.51x_2-4.94{\times}10^{-3}x_3-0.03x_4+0.45x_5-0.07x_6-0.10x_7+0.07x_8-9.60{\times}10^{-3}x_1x_2-8.20{\times}10^{-3}x_1x_5+2.17{\times}10^{-3}x_3x_7-0.03x_3x_8+0.05x_5x_8$ The optimal glass composition similar to the thermal expansion coefficient of Si based on these fitted models is $65.53SiO_2{\cdot}25.00Al_2O_3{\cdot}5.00La_2O_3{\cdot}2.07ZrO_2{\cdot}0.70MgO{\cdot}1.70SrO$.