• Title/Summary/Keyword: ${238}^U$

Search Result 215, Processing Time 0.026 seconds

A Preliminary Study on Soil-Gas 222Rn Concentrations Depending on Different Bedrock Geology (기반암에 따른 토양가스 222Rn농도의 분포에 관한 기초연구)

  • Je, Hyun-Kuk;Kang, Chigu;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.415-424
    • /
    • 1998
  • In order to investigate soil-gas $^{222}Rn$ concentrations, Kwanak Campus (Seoul National University), Boeun (Choong-buk) and Gapyung (Kyonggi) areas were selected and classified depending on their base rock types. Radon risk indices of these study areas decrease in the order of Gapyung>Kwanak Campus>Boeun areas, and in the order of rock type as banded gneiss>granite gneiss>granite>black slate-shale>mica schist>shale-lirnestone>phyllite-schist. Radon emanating trends with water content and grain size of soils were assessed by modified Morse 3 min. method. Radon emanation increases with the increase of water content in soils which is lower than 6~16 wt.%, and decreases in the range of higher than 6-16 wt. %. It shows that Rn emanation increases with the decrease of soil grain size. Radioactivity analysis of radionuclides of 238U series in some soil samples shows that radioactive disequilibrium state between $^{226}Ra$ and $^{238}U$ exists owing to different geochemical behavior of each radionuclide, and, it is necessary to carry out radioactive isotope geochemical approach for soil-gas $^{222}Rn$ study.

  • PDF

Statistical Analysis Using Living Radiation Survey Data on Processed Products (가공제품에 대한 생활주변방사선 실태조사 자료를 활용한 통계분석)

  • Choi, Kyoungho;Cho, Jung Keun
    • Journal of radiological science and technology
    • /
    • v.43 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • Radiation Following the 2011 Fukushima nuclear accident in Japan, public interest and anxiety about radiation safety increased, and vague anxiety about commonly exposed living radiation was generated. The Atomic Energy Safety Commission has been conducting a survey of processed products that advertise "negative ions" and "far-infrared" emissions under the Living Radiation Safety Management Act. In this study, in-depth analysis was performed from a statistical point of view using the measurement data presented in the Nuclear Safety Committee's actual survey analysis report as secondary data. As a result, there was a statistically significant difference (p<0.005) between latex and civil affairs products. There were also statistically significant differences (p<0.05) in the results of testing whether there were significant differences in the annual exposure dose between groups after categorizing 71 civil products, including radon beds, into bed, bedding, and living and other categories. The correlation analysis results also confirm that, as is commonly known, the annual doses received from processed products are associated with radon derived from U-238 and Th-232.

Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors

  • Park, Hansol;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1287-1300
    • /
    • 2017
  • Based on the observation that ignoring the angle dependency of multigroup resonance cross sections within a fuel pellet would result in nontrivial underestimation of the spatial self-shielding of flux, a parametrized spectral superhomogenization (SPH) factor library (PSSL) method is developed as a practical means of resolving the problem. Region-wise spectral SPH factors are calculated by the normal and transport corrected SPH iterations after ultrafine group slowing down calculations over various light water reactor pin-cell configurations. The parametrization is done with fuel temperature, U-238 number density, fuel radius, moderator source represented by ${\Sigma}_{mod}V_{mod}$, and the number density ratio of resonance nuclides to that of U-238 in a form of resonance interference correction factors. The parametrization is successful in that the root mean square errors of the interpolated SPH factors over the fuel regions of various pin-cells are within 0.1%. The improvement in reactivity error of the PSSL method is shown to be superior to that by the original SPH method in that the reactivity bias of -200 pcm to -300 pcm vanishes almost completely. It is demonstrated that the environment effect takes only about 4% in the reactivity improvement so that the pin-cell based PSSL method is effective in the assembly problems.

Modeling the sensitivity of hydrogeological parameters associated with leaching of uranium transport in an unsaturated porous medium

  • Mohanadhas, Berlin;Govindarajan, Suresh Kumar
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.462-473
    • /
    • 2018
  • The uranium ore residues from the legacies of past uranium mining and milling activities that resulted from the less stringent environmental standards along with the uranium residues from the existing nuclear power plants continue to be a cause of concern as the final uranium residues are not made safe from radiological and general safety point of view. The deposition of uranium in ponds increases the risk of groundwater getting contaminated as these residues essentially leach through the upper unsaturated geological formation. In this context, a numerical model has been developed in order to forecast the $^{238}U$ and its progenies concentration in an unsaturated soil. The developed numerical model is implemented in a hypothetical uranium tailing pond consisting of sandy soil and silty soil types. The numerical results show that the $^{238}U$ and its progenies are migrating up to the depth of 90 m and 800 m after 10 y in silty and sandy soil, respectively. Essentially, silt may reduce the risk of contamination in the groundwater for longer time span and at the deeper depths. In general, a coupled effect of sorption and hydro-geological parameters (soil type, moisture context and hydraulic conductivity) decides the resultant uranium transport in subsurface environment.

Assessment of Internal Exposure by the Determination of U and Th in $PM_{10}$ using Instrumental Neutron Activation Analysis (기기중성자방사화분석을 이용한 도시지역 $PM_{10}$ 대기먼지 중 U과 Th 분석에 의한 내부 피폭선량 평가)

  • 문종화;박광원;정용삼
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.299-300
    • /
    • 2002
  • 현재 우리가 살고 있는 지구에는 인공적 또는 자연적으로 생성된 많은 방사성 핵종이 혼재하고 있으며 인간은 이러한 자연환경에 항상 노출되어 있다. 우라늄(U)과 토륨(Th)은 자연계에 존재하는 $\alpha$입자를 방출하는 방사성 원소이며 이들의 연속적인 $\alpha$$\beta$붕괴에 의하여 많은 방사성 핵종이 생성된다. 특히 대기중이나 토양, 암석에 함유되어 있는 U-238은 자발 붕괴하여 라돈(Rn-222)이 되고 라돈에 의하여 생성된 딸 핵종들이 호흡을 통하여 흡수되어 방사선 피폭을 유발한다고 알려져 있다. (중략)

  • PDF

Deposional Age of the Bangnim Group, Pyeongchang, Korea Constrained by SHRIMP U-Pb Age of the Detrital Zircons (쇄설성 저어콘의 SHRIMP U-Pb 연령으로 한정한 평창지역 방림층군의 퇴적시기)

  • Gwak, Mu-Seong;Song, Yong-Sun;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • We determined SHRIMP U-Pb ages of the detrital zircons separated from the Bangnim Group of the Pyeongchang area to constrain its depositional age. As the result, the minimum age group yielded $^{206}Pb/^{238}U$ age of $450.3{\pm}4.2Ma$ (n=3), suggesting depositional age younger than Late Ordovician. Therefore, the Bangnim Group cannot be a Precambrian sedimentary formation but is younger than Myobong Formation of the Early Paleozoic Joseon Supergroup of the Taebaeksan basin. Such a depositional age implies that the Bangnim Group and structurally overlying Jangsan Quartzite should be in fault contact, suggesting that the Jangsan Quartzite, Myobong Formation and Pungchon Limestone thrusted over the Bangnim Group. The zircon U-Pb age distribution pattern of the Bangnim Group resembles those of the Early Paleozoic Myobong and Sambangsan Formations of the Taebaeksan basin and seemingly Middle Paleozoic Daehyangsan Quartzite and the Taean Formation. However, detrital zircon U-Pb age patterns of the Late Paleozoic Pyeongan Supergroup are quite distinct from them, suggesting drastic change in provenance of the detrital zircon supply. Therefore, we suggest that the Bangnim Group was deposited before the Pyeongan Supergroup.

Radiological hazards assessment associated with granitoid rocks in Egypt

  • Ahmed E. Abdel Gawad;Masoud S. Masoud;Mayeen Uddin Khandaker;Mohamed Y. Hanfi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2239-2246
    • /
    • 2024
  • The present study aimed to assess the radioactive hazards associated with the application of granitoid rocks in building materials. An HPGe spectrometer was used to detect the levels of the radioactive elements uranium-238, thorium-232, and potassium-40 in the granitoid rocks. The results showed that the levels of these elements were lower (38.32 < 33 Bq kg-1), comparable (47.19-45 Bq kg-1) and higher (992.26 ≫> 412 Bq kg-1) than the worldwide limits for 238U, 232Th, and 40K concentration, respectively. The exposure to gamma radiation of granitoid rocks was studied by various radiological hazard variables like the absorbed dose rate (Dair), the outdoor and indoor annual effective dose (AEDout and AEDin), and excess lifetime cancer risk (ELCR). A variety of statistical methods, including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) was used, to study the relationship between the radioactive elements and the radiological hazards. According to statistical analysis, the main radioactive risk of granitoid rocks is contributed to by the elements uranium-238, thorium-232, and potassium-40. Granitoid rocks can be applied in building materials, but under control to prevent risk to the public.

Assessment of Inhalation Dose Sensitivity by Physicochemical Properties of Airborne Particulates Containing Naturally Occurring Radioactive Materials (천연방사성물질을 함유한 공기 중 부유입자 흡입 시 입자의 물리화학적 특성에 따른 호흡방사선량 민감도 평가)

  • Kim, Si Young;Choi, Cheol Kyu;Park, Il;Kim, Yong Geon;Choi, Won Chul;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.216-222
    • /
    • 2015
  • Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of $0.01{\mu}m$ sized particulates were higher than doses due to $100{\mu}m$ sized particulates by factors of about 100 and 50 for $^{238}U$ and $^{230}Th$, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of $11g{\cdot}cm^{-3}$ and $0.7g{\cdot}cm^{-3}$ resulted in dose difference by about 60 %. For $^{238}U$, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of $^{238}U$ was about 9 times higher than dose for absorption F. For $^{230}Th$, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of $^{230}Th$ was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and conditions and use the site specific particulate properties to accurately access radiation dose to workers at NORM processing facilities.

Uranium Enrichment Determination Using a New Analysis Code for the U XKα Region: HyperGam-U

  • Kim, Junhyuck;Choi, Hee-Dong;Park, Jongho
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.778-784
    • /
    • 2016
  • HyperGam-U was recently developed to determine uranium enrichment based on ${\gamma}$- and X-ray spectroscopy analysis. The $XK_{\alpha}$ region of the uranium spectrum contains 13 peaks for $^{235}U$ and $^{238}U$ and is used mainly for analysis. To describe the X-ray peaks, a Lorentzian broadened shape function was used, and methods were developed to reduce the number of fitting parameters for decomposing the strongly overlapping peaks using channel-energy, energy-width, and energy-efficiency calibration functions. For validation, eight certified reference material uranium samples covering uranium enrichments from 1% to 99% were measured using a high-resolution planar high-purity germanium detector and analyzed using the HyperGam-U code. When corrections for the attenuation and true coincidence summing were performed for the detection geometry in this experiment, the goodness of fit was improved by a few percent. The enrichment bias in this study did not exceed 2% compared with the certified values for all measured samples.

A Study of Usage Intention on the u-Healthcare Service with Voluntariness (자발성을 고려한 u-Healthcare 서비스의 이용의도에 관한 연구)

  • Lee, Chang Won;Jang, Sung Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.4
    • /
    • pp.225-238
    • /
    • 2012
  • The purpose of this study is to examine the factors influencing usage intention of u-Healthcare with voluntariness in long-term care hospitals. This model tests various theoretical research hypotheses relating to u-Healthcare, UTAUT theory and voluntariness. The proposed model is analyzed to target long-term care hospitals. Questionnaires have been collected during two months of 2010 and total 142 has been considered to be valid. Smart PLS (partial least square) 2.0 and SPSS 15.0 have been utilized for deriving the study results. The results of hypothesis testing are as follows. First, performance expectance, effort expectancy and social influence positively influence usage intention. Second, facilitation not influence usage intention. Still due to lack of technical infrastructure to promote conditions of use u-Healthcare in long-care hospitals for u-Healthcare system also considered to be not significantly affected. Finally, performance expectance to usage intention for low voluntariness group is significantly larger than those for high voluntariness group. In addition, social influence to usage intention for high voluntarines group is significantly larger than those for low voluntariness group.