• Title/Summary/Keyword: ${131}^I$

Search Result 1,078, Processing Time 0.032 seconds

Measurements of Actual Effective Half-Life in $^{131}I$ Therapy for Graves' Hyperthyroidism (그레이브스 갑상선기능항진증 환자의 방사성옥소($^{131}I$) 치료시 실제 유효반감기의 측정)

  • So, Yong-Seon;Kim, Myung-Seon;Kwon, Ki-Hyun;Kim, Seok-Whan;Kim, Tae-Hyung;Han, Sang-Woong;Kim, Eun-Sil;Kim, Chong-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Radioiodine($^{131}I$) has been used for the treatment of Graves' hyperthyroidism since the late 1940's and is now generally regarded as the treatment of choice for Graves' hyperthyroidism who does not remit following a course of antithyroid drugs. But for the dose given, several different protocols have been described by different centers, each attempting to reduce the incidence of long-term hypothyroidism while maintaining an acceptable rate control of Graves' hyperthyroidism. Our goals were to evaluate effective half-life and predict absorbed dose in Graves' hyperthyroidism patients, therefore, to calculate and readminister radioiodine activity needed to achieve aimed radiation dose. Our data showed that the mean effective $^{131}I$ half-life for Graves' disease is 5.3 days(S.D=0.88) and mean biologic half-life is 21 days, range 9.5-67.2 days. The mean admininistered activity and the mean values of absorbed doses were 532 MBq(S.D.=254), 112 Gy (S.D.=50.9), respectively. The mean activity needed to achieve aimed radiation dose were 51MBq and marked differences of $^{131}I$ thyroidal uptake between tracer and therapy ocurred in our study. We are sure that the dose calculation method that uses 5 days thyroidal $^{131}I$ uptake measurements after tracer and therapy dose, provides sufficient data about the effective half-life and absorbed dose of $^{131}I$ in the thyroid and predict the effectiveness of $^{131}I$ treatment in Graves' hyperthyroidism.

  • PDF

Evolution of iodine from $NaI-Na_2 O_2$ System

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.109-115
    • /
    • 1972
  • The evolution of radioiodine 131I from a sodium peroxide system as a function of time, temperature, and carrier gas (nitrogen) flow rate was studied. Virtually no iodine was volatilized at 25$0^{\circ}C$ and a very small amount, of the order of 10$^{-3}$ % per flour, at 63$0^{\circ}C$. Substantially greater amounts of iodine were volatilized at 7$25^{\circ}C$ and 83$0^{\circ}C$. The data are consistent with the hypothesis that the mechanism of transfer is distillation of sodium iodide, and that elemental iodine is not produced in this system.

  • PDF