• Title/Summary/Keyword: ${\varepsilon}LUMO$ energy

Search Result 2, Processing Time 0.016 seconds

Molecular holographic QSPR analysis on the reactivity between glycine and ninhydrin analogues as latent fingerprints detector (잠재지문 검출제로서 Ninhydrin 유도체들과 Glycine과의 반응성에 관한 분자 홀로그래픽적인 QSPR 분석)

  • Kim, Se-Gon;Jang, Seok-Chan;Cho, Yun-Gi;Hwang, Tae-Yeon;Park, Sung-Woo;Sung, Nack-Do
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.339-346
    • /
    • 2007
  • To search the ninhydrin derivatives that have high chromogenic and fluorogenic properties, molecular holographic quantitative structure property relationship (HQSPR) models on the reactivity between glycine and ninhydrin analogues as latent fingerprint detector were derived and investigated quantitatively. The ${\varepsilon}LUMO$ (e.v.) energy of ninhydrin molecule was an important factor to reactivity of ninhydrin. And, it is suggested that the nucleophilic reaction by orbital-controlled reaction from the frontier molecular orbital (FMO) interaction between glycine and ninhydrin derivatives was more superior than that of electrophilic reaction by charged controlled reaction. The analytical results in atomic contribution maps also shows that the reactivity of ninhydrin was increased by meta-substituents as strong electron withdrawing groups on the benzo ring. Therefore, it is sugested by HQSPR and QSPR model that the 5,6-dinitroninhydrin molecule would increase the reactivity as much as three times as compared to none substituted ninhydrin molecule.

Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group

  • Wang, Yuan;Yu, Qu Feng;Park, Hea-Jung;Ryu, Suk-Hwa;Choi, Jung-Hei;Yoon, Ung-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3081-3089
    • /
    • 2011
  • A series of new bis-thienylanthracene derivatives D1~D5 containing 9,10-antharcene moiety in the center and 2-methylenemalonotitrile or 2-cyanoacrylic acid functional group on the terminal thiophenes were synthesized and characterized by $^1H$-NMR and high-resolution mass spectroscopy. Their optical, electrochemical, and thermal properties were measured. They have absorption ${\lambda}_{max}$ in the range of 437~480 nm and max of $7.4{\times}10^3{\sim}2.0{\times}10^4M^{-1}cm^{-1}$. The substitution of 2-cyanoacrylic acid group allows greater value of ${\varepsilon}_{max}$ than that of 2-methylenemalonotitrile. TGA curves showed that D4 and D5 which have 2-cyanoacrylic acid functional group on the terminal thiophene(s) exhibit good thermal stability and D4 was thermally stable up to $400^{\circ}C$. Their optical properties and LUMO energy levels measured suggest that they can serve as potential candidates for electron donor materials of organic photovoltaic cells (OPVs) or D4 and D5 which contain 2-cyanoacrylic acid group can be used as organic dyes of dye-sensitized solar cells (DSSCs).