• Title/Summary/Keyword: ${\varepsilon}$-martensite

Search Result 44, Processing Time 0.021 seconds

Effect of Stress on the Damping Capacity of Damaged Damping Alloy under Fatigue Stress (피로손상된 제진합금의 감쇠능에 미치는 피로 응력의 영향)

  • Lee, Myeong-Soo;Lee, Ye-Na;Nam, Ki-Woo;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.583-589
    • /
    • 2018
  • This study investigates the effect of fatigue stress on the damping capacity in a damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress. ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms by fatigue stress in the damaged Fe-22Mn-12Cr-3Ni-2Si4-Co damping alloy under fatigue stress. The ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms with the specific direction and surface relief, or they cross each other. With an increasing fatigue stress, the volume fraction of ${\alpha}^{\prime}-martensite$ and ${\varepsilon}-martensite$ increases. With an increasing fatigue stress, the damping capacity increases with an increase in the volume fraction of ${\varepsilon}-martensite$. The increase in the damping capacity in the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co alloy under fatigue stress strongly affects the increase of ${\varepsilon}-martensite$ formed by fatigue stress, but the damping capacity of the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress is strongly controlled by a large amount of ${\alpha}^{\prime}-martensite$.

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.

Effect of Microstructure on the Damping Capacity and Tensile Properties of Fe-Al-Mn Alloys (Fe-Al-Mn 합금의 진동감쇠능 및 인장성질에 미치는 미세조직의 영향)

  • Son, D.U.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kim, H.C.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • The damping capacity and strength of Fe-2Al-26Mn alloys have been studied for the development of new materials with high strength and damping capacity. Particularly, the effect of ${\alpha}'\;and\;{\varepsilon}$ martensite phase, which constitutes the microstructure of cold rolled Fe-Al-Mn alloys, has been investigated in terms of the strength and damping capacity of the alloys. The damping capacity rises with increasing the degree of cold rolling and reveals the maximum value at 25% reduction. The damping capacity is strongly affected by the volume fraction of ${\varepsilon}$ martensite, while the other phases, such as ${\alpha}'$ martensite and austenite phase, actually exhibit little effect on damping capacity. Considering that tensile strength increases and elongation decreases with increasing the volume fraction of ${\alpha}'$ martensite, it is proved that tensile strength is mainly affected by the amount of ${\alpha}'$ martensite.

  • PDF

Effect of Grain Size on the Damping Capacity of Fe-26Mn-4Co-2Al Damping Alloy (Fe-26Mn-4Co-2Al 제진합금의 감쇠능에 미치는 결정립 크기의 영향)

  • Jeong, Kyu-Seong;Kim, Doe-Hoon;Kwon, Soon-Doo;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.129-134
    • /
    • 2018
  • This study was carried out to investigate the effect of grain size on the damping capacity of the Fe-26Mn-4Co-2Al damping alloy. ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ were formed by cold working, and these martensites were formed with a specific direction and surface relief. With an increase in grain size, the volume fraction of ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ increased by decrement the austenite phase stability. This volume fraction more rapidly increased in cold-rolled specimen than in the specimen that was not cold-rolled. The damping capacity also increased more with the augmentation an increased grain size and more rapidly increased in cold-rolled specimen than in the specimen that was not cold rolled. The effect of grain size on the damping capacity was larger in the cold-rolled specimen than the specimen that was not cold-rolled. Damping capacity linearly increased with an increase in volume fraction of ${\varepsilon}-martensite$. Thus, the damping capacity was affected by the ${\varepsilon}-martensite$.

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능])

  • Son, D.U.;Jeong, S.H.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF

Correlationship between Tensile Properties and Damping Capacity of 316 L Stainless Steel (316 L 스테인리스강의 인장성질과 감쇠능의 관계)

  • Kwoon, Min-Gi;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • This study is experimentally investigated whether or not a relationship exists between the mechanical properties and damping capacity of cold-rolled 316 L stainless steel. Deformation-induced martensite was formed with surface relief and directionality. With the increasing degree of deformation, the volume fraction of ${\varepsilon}$-martensite increased, and then decreased, while ${\alpha}^{\prime}$-martensite increased rapidly. With an increasing degree of deformation, tensile strength was increased, and elongation was decreased; however, damping capacity was increased, and then decreased. Tensile strength and elongation were affected in the ${\alpha}^{\prime}$-martensite; hence, damping capacity was influenced greatly by ${\varepsilon}$-martensite. Thus, there was no proportional relationship between strength, elongation, and damping capacity.

The Relationship between Mechanical Properties and Damping Capacity of Thermo-mechanical Treated 316L Stainless Steel (가공열처리한 316L 스테인리스강의 기계적 성질과 감쇠능의 상호관계)

  • Kim, J.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.271-278
    • /
    • 2017
  • This study was carried out to investigate the relationship between the mechanical properties and damping capacity of thermo-mechanical treated 316L stainless steel. Dislocations, ${\varepsilon}$ and ${\alpha}^{\prime}$-martensites were formed by thermo-mechanical treatment, and the grain size was changed from micrometer to sub-micrometer by 5-cycled thermo-mechanical treatment. The volume fraction of dislocations, ${\varepsilon}$ and ${\alpha}^{\prime}$-martensites was increased, and grain size of austenite increased and lengthened by the with increasing cycle number of thermo-mechanical treatment. In 5-cycled specimens, the volume fraction of ${\alpha}^{\prime}$-martensite was more than 25% and the less than 5% of volume fraction of ${\varepsilon}$-martensite was attained. With increasing number of thermo-mechanical treatment, hardness, strength and damping capacity were increased, but elongation was decreased. Damping capacity was increased with increased hardness and strength, but decreased with increased elongation, and this result was the opposite tendency for general metal.

Effects of Co Addition on Damping Capacity of Fe-23%Mn Martensite Alloy (Fe-23%Mn 마르텐사이트합금의 진공감쇠능에 미치는 Co 첨가의 영향)

  • Kong, Dong-Keon;Jun, Joong-Hwan;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 1997
  • Effect of Co content on the microstructure and damping capacity of Fe-23%Mn-X%Co alloy was studied. The volume fraction of ${\varepsilon}$ martensite of the alloy was increased with increasing Co content. The hardness was increased with lowering cooling temperature and increasing Co content in Fe-23%Mn-X%Co alloy, which is ascribed to the increase in ${\varepsilon}$ martensite content. The damping capacity of Fe-23%Mn-X%Co alloy was linearly increased with increasing the strain amplitude, and was constant regardless of Co content at the same volume fractions of ${\varepsilon}$ martensite when the low strain amplitudes ($1{\sim}3{\times}10^{-4}$) were applied, while the damping capacity with large strain amplitudes ($4{\sim}6{\times}10^{-4}$) became higher with increasing Co content at all valume fractions of ${\varepsilon}$.

  • PDF

Effect of Solution Treatment on the Microstructure and Damping Capacity of Fe-17%Mn Alloy (Fe-17%Mn 합금의 미세조직과 진동감쇠능에 미치는 용체화처리의 영향)

  • Lee, Young-Kook;Jun, Joong-Hwan;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.12-18
    • /
    • 1996
  • Austenite(${\gamma}$) grain size, ${\varepsilon}$ martensite volume fraction and damping capacity of Fe-17%Mn alloy have been investigated as a function of solution treatment temperature of $600^{\circ}C$ to $1100^{\circ}C$. With increasing the solution temperature, ${\gamma}$ grain size, ${\varepsilon}$ martensite content and damping capacity are increased, while the hardness is decreased. When ${\gamma}$ grains are small, ${\varepsilon}$ plates grow in only one direction in each ${\gamma}$ grain. However, if the ${\gamma}$ grains are large in accordance with high solution treating temperature, several ${\varepsilon}$ variants with different orientations are formed and intersected each other in each ${\gamma}$ grain. In spite of small ${\varepsilon}$ martensite content, the damping capacity of the specimen which was annealed at $700^{\circ}C$, followed by subzero treatment at $-196^{\circ}C$, is almost equal to that of the specimen annealed at $1000^{\circ}C$ and subsequently quenched to room temperature. From this result it is suggested that the damping capacity of Fe-17%Mn alloy having fine ${\gamma}$ grains is mainly attributed to the movement of ${\gamma}/{\varepsilon}$ interface without the operation of other damping sources such as ${\varepsilon}/{\varepsilon}$ boundaries and stacking faults in ${\varepsilon}$ reported previously.

  • PDF

Effects of Alloying Elements(C, Si) and Hot-Rolling on Damping Capacity and Mechanical Properties of Fe-17%Mn Alloys (Fe-17%Mn 합금의 진동감쇠능과 기계적 성질에 미치는 합금원소(C, Si) 및 열간압연의 영향)

  • Kim, J.C.;Han, D.W.;Back, J.H.;Kim, T.H.;Baik, S.H.;Lee, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.99-104
    • /
    • 2005
  • In this study, the effects of C and Si on damping capacity and mechanical properties of as-cast and as-rolled Fe-17%Mn alloys were investigated as a basic study for the purpose of the commercialization of the alloy. The $M_s$ temperature of ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation in Fe-17%Mn alloy was decreased with increasing C and Si contents, resulting in the less volume fraction of ${\varepsilon}$ martensite. The damping capacity was also decreased with increasing alloying content because of less ${\varepsilon}$ amount and the reduction in mobility of the damping sources such as the stacking fault boundaries and ${\gamma}/{\varepsilon}$ interfaces due to the pinning effect by alloying elements. The mechanical properties of as-rolled alloys were superior to those of as-cast alloys probably because of finer ${\gamma}$ grains, larger amount of ${\varepsilon}$ martensite, and chemical homogeneity.