• Title/Summary/Keyword: ${\varepsilon}$-caprolactone

Search Result 142, Processing Time 0.024 seconds

One-Pot Synthesis of Clay-dispersed Poly(styrene-co-acrylonitrile) Copolymer Nanocomposite using Poly($\varepsilon$-caprolactone) as a Compatibilizer

  • Ko, Moon-Bae
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.186-191
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of three components, i.e. poly (styrene co-acrylonitrile) copolymer (SAN), poly ($\xi$-caprolactone ) (PCL), and an organophilic clay(Cloisite(R) 30A). In the present study, poly($\xi$-caprolactone) was added in the mixtures in order to facilitate the intercalation of SAN into the gallery of silicate layers, and the molecular weight effects of PCL on the dispersion of silicate layers were compared by changing the amount of added PCL. The degree of dispersion of 10-$\AA$-thick silicate layers of clay in the nanocomposites was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that PCL added in the mixture facilitate the intercalation of SAN copolymers into the galleries of silicate layers modified with an organic intercalant, resulting in the better dispersion of clay. It was, also, observed that the processing temperature influences the degree of clay dispersion.

  • PDF

Efficient Synthesis of 10-Membered Lactone Possessing Ring-olefin at 7,8-Position (7,8번 위치에 이중결합을 갖는 10-membered lactone의 효율적인 합성)

  • 서영거;이지연;조윤상
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.31-35
    • /
    • 1995
  • An unusual 10-membered lactone possesing ring-olefin at 7, 8-position has been efficiently synthesized. The $\omega$-hydroxy acid as a cyclization precusor was derived from $\varepsilon$-caprolactone in 41% overall yield of 7 steps and efficiently cyclized by Mukaiyama procedure.

  • PDF

Microstructure, Thermal Properties and Rheological Behavior of PLA/PCL Blends for Melt-blown Nonwovens (멜트블론 부직포 제조를 위한 PLA/PCL 블렌드의 미세구조, 열적특성, 및 유변학적 성질)

  • Sun, Hui;Yu, Bin;Han, Jan;Kong, Jinjin;Meng, Lingrui;Zhu, Feichao
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.477-483
    • /
    • 2014
  • Poly(lactic acid) (PLA) and poly(${\varepsilon}$-caprolactone) (PCL) blends with various components for melt-blown non-wovens were prepared by a twin-screw extruder. Tributyl citrate (TBC) was added in order to improve the miscibility between PLA and PCL. The results showed that small circular particles of PCL were dispersed in PLA matrix uniformly. The addition of PCL had the heterogeneous nucleation effect on the crystallization of PLA and decreased thermal stability of PLA. The flow of pure PLA and blends approached to Newtonian liquid at a low shear rate and expressed more obvious viscoelasticity at a high shear rate.

Effects of In Vitro Degradation on the Weight Loss and Tensile Properties of PLA/LPCL/HPCL Blend Fibers

  • Yoon Cheol Soo;Ji Dong Sun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly ($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly ($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending and spinning for bioab­sorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect of in vitro degra­dation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solu­tion at pH 7.4 and 37$^{\circ}C$ for 1-8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of $5 wt\%, HPCL contents of $35 wt\%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about $93.5\% even at hydrolysis time of 2 weeks.

Preparation and Properties of Waterborne Polyurethanes Based on Ttiblock Glycol $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$ for Water Vapor Permeable Coatings: Effect of Soft Segment Content

  • Kwak, Yong-Sil;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.153-158
    • /
    • 2002
  • A series of waterborne polyurethanes (WBPU) were prepared from 4,4-dicyclohexylmethane diisocyanate ($H_{12}$MDI),2,2-bis(hydroxylmethyl) propionic acid (DMPA), othylenediarnine (EDA), triethylamine (TEA), and triblock glycol [TBG, ($\varepsilon$-caprolactone)$_{4.5}$-poly(tetramethylene ether) glycol (MW= 2000)-($\varepsilon$-caprolactone)$_{4.5}$: $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$, MW=3000] as a soft segment. Two melting peaks of TBG at about 14$^{\circ}C$ and 38$^{\circ}C$ were observed indicating the presence of two different crystalline domains composed of CL and PTMG dominant component. The effect of soft segment content (60-75 wt%) on the colloidal properties of dispersion, and thermal and mechanical properties of WBPU films, the water vapor permeability (WVP) and water resistance (WR) of WBPU-coated Nylon fabrics, and the adhesive strength of WBPU- coated layer and Nylon fabrics was investigated. As soft segment contents increased, the water vapor permeability of WBPU- coated Nylon fabrics increased from 3615 to 4502 g/$m^2$day, however, the water resistances decreased from 1300 to 500 mm$H_2$O.O.

Surface Modification of Poly(L-lactide-co-ε-caprolactone) Nanofibers by Electron-beam Irradiation (전자선 조사 방법을 통한 생분해성고분자의 표면개질 특성 평가)

  • Kim, Woo-Jin;Shin, Young Min;Park, Jong-Seok;Gwon, Hui-Jeong;Nho, Young-Chang;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.365-370
    • /
    • 2011
  • Electrospun nanofibers prepared with synthetic biodegradable polymer have some limitations in regulating adhesion, proliferation, and spreading of cells because of their surface hydrophobicity and absence of cell-interaction. In this study, we functionalized the electrospun poly(L-lactide-co-${\varepsilon}$-caprolactone) (PLCL) nanofibers with acrylic acid (AAc) to modulate their surface hydrophilicity using electron-beam irradiation method and then measured grafting ratio of AAc, water contact angle, and ATR-FTIR of AAc-grafted nanofibers. A grafting ratio of AAc on the nanofibers was increased as irradiation dose and AAc concentration were increased. AAc-grafted nanofibers also have higher wettability than non-modified nanofibers. In conclusion, those surface-modified nanofibers may be an essential candidate to regulate cell attachment in tissue engineering applications.

Poly(ε-caprolactone) Microcapsule with Encapsulated Nifedipine Prepared by Magnetic Stirrer

  • Lee, Hyeran;Lee, Deuk Yong;Song, Yo-Seung;Kim, Bae-Yeon
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • The microencapsulation of nifedipine (NF) with 4 wt% of poly(${\varepsilon}-caprolactone$) (PCL)/polyvinylpyrollidone (PVP) or PCL/polyethylene glycol (PEG) was carried out by solvent evaporation method in oil in water emulsion system to investigate the effect of PVP and PEG addition on drug release behavior of the microcapsules. The PVA (emulsifier) concentration of 1.0 wt% was chosen for the formation of PCL capsule having an average size of $154{\pm}25{\mu}m$ due to nearly spherical shape with a narrow size distribution. As PCL/PVP and PCL/PEG ratios were raised from 10/0 to 6/4, the capsule size increased gradually from $154{\pm}25{\mu}m$ to $236{\pm}32{\mu}m$ and $248{\pm}56{\mu}m$, respectively. The drug release rate of PCL/PVP and PCL/PEG capsules increased dramatically from 0 to 4 h at the beginning and then reached the plateau region from 20 h. As the concentration of PVP or PEG increased, the amount of drug release increased, suggesting that the larger capsule size was attributed to the higher drug content. However, the drug release behavior remained almost constant. The PCL capsules exhibited no evidence of causing cell lysis or toxicity regardless of NF loading, implying that the microcapsules are clinically suitable for use as drug delivery systems.

Synthesis and Characterization of Linear and Branched Copolymers of Poly(ethylene glycol) and $Poly({\varepsilon}-caprolactone)$ (선형 및 분지 구조의 폴리(에틸렌 글리콜)/폴리카프로락톤 공중합체의 합성 및 특성 검토)

  • Hyun Hoon;Kim Moon-Suk;Khang Gil-Son;Rhee John-M.;Lee Hai-Bang
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.146-151
    • /
    • 2006
  • Linear and branched copolymers consisting of poly(ethylene glycol) (PEG) and $Poly({\varepsilon}-caprolactone)$ (PCL) were prepared to compare the characterization of star-shaped copolymers with various molecular architecture. Linear and branched PEG-PCL (1-arm, 2-arm, 4-arm, and 8-arm) copolymers were synthesized by the ring-opening polymerization of ${\varepsilon}-caprolactone$ in the presence of HCl $Et_2O$ as a monomer activator at room temperature. The synthesized copolymers were characterized with $^1H-NMR$, GPC, DSC, and XRD. As a result of the DSC and XRD, each copolymers showed different thermal properties and crystallinity according to the number of ms. The micellar characterization of linear and branched copolymers in an aqueous phase was carried out by using NMR, dynamic light scattering, AM, and fluorescence techniques. The critical micelle concentration (CMC) and diameters of micelles depended on the number of arms. Most micelles exhibited a spherical shape in AFM. In this study, we characterized star-shaped PEG-PCL copolymers and investigated their molecular architecture effect on the various properties. Furthermore, we confirmed that the micelles termed with linear and branched PEG-PCL copolymers have possibility as a potential hydrophobic drug delivery vehicle.

Influence of Surface Treatment of SiO$_2$ and Stirring Rate on Fragrant Oil Release Behavior of Poly($\varepsilon$-caprolactone) Microcapsules (실리카의 표면 처리와 교반 속도가 폴리카프로락톤 마이크로캡슐의 향유 방출 거동에 미치는 영향)

  • 박수진;양영준;이재락;서동학
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.464-469
    • /
    • 2003
  • In this work, the fragrant oil release behavior of poly($\varepsilon$-caprolactone) (PCL) microcapsules containing SiO$_2$ was investigated. The SiO$_2$ was chemically treated in 10, 20, and 30 wt% hydrochloric acid and sodium hydroxide. The acid and base values were determined by Boehm's titration technique and $N_2$/77 K adsorption isotherm characteristics, the specific surface area and total pore volume were studied by BET. The PCL microcapsules containing SiO$_2$ and fragrant oil were prepared by oil-in-water (o/w) emulsion solvent evaporation method. The shape and surface of PCL microcapsules were observed using image analyzer and scanning electron microscope (SEM). The fragrant oil release behavior of PCL microcapsules was characterized using UV/vis. spectra. The average diameters of PCL microcapsules were decreased from 35 to 21 $\mu$m with increasing stirring rate. It was found that in the case of acidic treatment the fragrant oil adsorption capacity and release rate were increased due to the increase of specific surface area and acid value. In the case of basic treatment, the fragrant oil adsorption capacity and release rate were decreased due to the decrease of sp ecific surface area and the increase of acid-base interactions between SiO$_2$-NaOH and fragrant oil with increasing base value of SiO$_2$.