• 제목/요약/키워드: ${\varepsilon}$-caprolactone

검색결과 142건 처리시간 0.024초

Surfactant-free microspheres of poly($\alpha$-caprolactone)/poly(ethylene glycol)/poly($\varepsilon$-caprolactone) triblock copolymers as a novel protein carriers

  • Sun, Sang-Wook;Jeong, Young-Il;Jung, Sun-Woong;Kim, Sung-Ho
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.408.2-409
    • /
    • 2002
  • The aim of this study is to prepare biodegradable microspheres without use of any kind of surfactants or emulsifiers for a novel sustained delivery carriers of protein drugs. Poly(e-caprolactone)/poly(ethylene glycol)/poly(e-caprolactone) (CEC) triblock copolymer was synthesized by ring-opening of e-caprolactone with dihydroxy poly(ethylene glycol) and was used to make surfactant-free microspheres. (omitted)

  • PDF

Synthesis and Charactrization of Polycaprolactone Nanocomposites Reinforced with Montmorillonite

  • Cho, Sung-Jun
    • 한국세라믹학회지
    • /
    • 제41권6호
    • /
    • pp.425-429
    • /
    • 2004
  • [DEACOOH]-Montmorillonite intercalations complex obtained from Na-Montmorillonite and 10-Carboxy-n-decyldimethylethylammonium bromide (organic cation) was reacted with the monomer ($\varepsilon$-caprolactone) to achieve the [DEACOOH]-$\varepsilon$-caprolactone-Montmorillonite intercalations complex. From this intercalations complex Montmorillonite/Polycaprolactone nanocomposites in which montmorillonite (inorganic polymer) is chemically linked with the polycaprolactone (organic polymer) were formed at 240$^{\circ}C$ by three different methods such as in stoichiometric amounts between monomer and organic cation, in excess of only the monomer and in excess of both organic cation and monomer. The products obtained after polymerization were analyzed with X-ray diffractometer and TEM.

Formation and Characterization of Chemically Combined [TEACOOH]-Montmorillonite/Polycaprolactone Nanocomposites

  • Cho, Sung-Jun
    • 한국세라믹학회지
    • /
    • 제44권2호
    • /
    • pp.71-78
    • /
    • 2007
  • A [TEACOOH]-Montmorillonite intercalations complex obtained from Na-Montmorillonite and 10-Carboxy-n-triethylammonium bromide was used to attempt the polymerization of ${\varepsilon}$-caprolactone between the layer spaces of the intercalations complex to achieve Montmorillonite-Polycaprolactone nanocomposites in which the inorganic material (montmorillonite) is chemically combined with the organic polymer (polycaprolactone). The results of X-ray-, IR-, and TEM-analyses for samples obtained after polymerization showed that a polycondensation reaction was successfully produced. For a more precise investigation of the polymeric reaction products the polymerized products were separated from the silicate layers and analyzed with an IR-spectrometer. A comparison of the results of the IR-analyses of the separated polymer with that of the polymer synthesized by the reaction of ${\varepsilon}$-caprolactone with only the organic cation and without montmorillonite showed that the two obtained polymers are the same compound.

Interface control in polymer/clay nanocomposites

  • Lee, Sang-Soo;Park, Min;Kim, Junkyung
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.11-15
    • /
    • 2003
  • In order to suppress a repulsive interfacial energy between hydrophilic clay and hydrophobic polymer matrix in preparing a polymer/clay nanocomposite, a third component of amphiphilic nature such as poly($\varepsilon$-caprolactone) (PCL) was introduced into the model system of styrene-acrylonitrile copolymers (SAN)/Na-montmorillonite. Once $\varepsilon$-caprolactone was polymerized in the presence of Na-rnontmorillonite, the successful ring-opening polymerization of $\varepsilon$-caprolactone and the well-developed exfoliated structure of PCL/Na-montmorillonite mixture were confirmed, Thereafter, SAN was melt-mixed with PCL/Na-montmorillonite nanocomposite, which resulted in that SAN matrix and PCL fraction were completely miscible to form homogeneous mixture with retention of the exfoliated state of Na-montmorillonite, exhibiting that PCL effectively stabilizes the repulsive polymer/clay interface and contributes the improvement of mechanical properties of the nanocomposites.

  • PDF

$\varepsilon$-caprolactone-grafted dextran 공중합체의 합성과 전기 방사에 관한 연구 (Synthesis and electrospinning of $\varepsilon$-caprolactone-grafted dextran)

  • Lee, Byoung-min;Narayan Bhattarai;Lee, Douk-rae;Kim, Hak-yong;Park, Soo-Jin
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.257-258
    • /
    • 2003
  • Crafting process consists of the reversible protection of the hydroxyl groups of the polysaccharide backbone by silylation, followed by the ring-opening polymerization (ROP) of $\varepsilon$-caprolactone (CL) initiated by the free remaining hydroxyl groups of the partially silylated dextran in the presence of tin-based catalysts. The last step relies upon the removal of silylating groups under mild acidic conditions yielding the desired amphiphilic graft copolymers.

  • PDF

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.

에스테르 교환반응으로 제조된 Poly(butylene succinate)/Poly(${\varepsilon}$-caprolactone) Copolyesters의 물리적 및 열적 성질에 관한 연구 (Thermal and Physical Properties of Poly(butylene succinate)/Poly(${\varepsilon}$-caprolactone) Copolyesters Prepared by Transesterification)

  • 유영태;양수봉;임승순
    • 폴리머
    • /
    • 제25권4호
    • /
    • pp.486-495
    • /
    • 2001
  • Poly(butylene succinate) (PBS)와 poly(${\varepsilon}$-caprolactone) (PCL) 분자 사슬 사이에 에스테르 교환반응을 이용하여 분해성 폴리에스터인 PBS/PCL copolyesters를 제조하였다. 합성된 공중합체의 열적 성질과 기계적 성질을 시차주사열량계와 인장 실험을 통해 조사하였다. 합성된 copolyester의 교환반응 여부를 $^1H-NMR$를 통해 확인할 수 있었다. PBS/PCL copolyesters의 환원점도는 PBS/PCL (50/50 wt%)를 제외하고 교환반응 시간에 따라 증가하였다. 시차주사열량계로 측정된 copolyester의 용융 거동에서 높은 온도에서 나오는, 즉 PBS에 해당하는 용융피크와 결정화 온도는 교환반응 시간에 따라 낮은 온도 쪽으로 이동하였다. 인장실험 결과로부터 40 wt% 이하의 PCL을 함유하는 공중합체의 파단강도와 파단신율은 순수한 PBS보다 향상되었지만, 50 wt% 이상일 때 파단강도는 결정화도 감소로 인하여 PBS 보다 낮아짐을 알 수 있었다. 반면에 copolyesters의 Young's modulus는 반응시간과 도입된 PCL 양에 따라 감소하였다.

  • PDF

Poly(ethylene naphthalate)/Poly($\varepsilon$-caprolactone) 용융 블렌딩에 의하여 발현된 공중합체의 Randomness에 관한 연구 (Study on the Randomness of Poly(ethylene naphthalate)/poly($\varepsilon$-caprolactone) Copolymer by Melt Blending)

  • 강호종;한규일;김환기
    • 폴리머
    • /
    • 제24권5호
    • /
    • pp.664-672
    • /
    • 2000
  • Poly(ethylene naphthalate)/poly($\varepsilon$-caprolactone) (PEN/PCL)의 용융 블렌딩시 필연적으로 발현되는 상호에스테르 교환반응은 PEN/PCL 공중합체를 형성하게 된다. 블렌드의 조성비, 상호에스테르 교환반응 조건 그리고 사용된 촉매가 형성된 공중합체의 randomness와 평균 sequence length에 미치는 영향을 살펴보고 이들과 블렌드의 생분해 특성과의 관계를 확인하여 보았다. 용융 블렌딩에 의하여 얻어진 PEN/PCL 공중합체는 randomness가 0과 1사이인 것으로 보아 블럭 공중합체임을 알 수 있었으며, 열처리 시간과 온도의 증가 그리고 촉매의 첨가에 의하여 randomness가 1에 근접하고 PEN과 PCL의 평균 sequence length 모두 감소하는 것으로 보아 랜덤 공중합체로 변화됨을 확인할 수 있었다. 이러한 공중합체의 생성과 랜덤화는 PEN/PCL 블렌드의 생분해성 감소를 초래함을 알 수 있었다.

  • PDF

Ring-Opening Polymerization of $\varepsilon$-Caprolactone and Cyclohexene Oxide Initiated by Aluminum $\beta$-Ketoamino Complexes: Steric and Electronic Effect of 3-Position Substituents of the Ligands

  • Liu, Binyuan;Li, Haiqing;Ha, Chang-Sik;Kim, Il;Yan, Weidong
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.441-445
    • /
    • 2008
  • A series of aluminum complexes supported by $\beta$-ketoamino, ligand-bearing, 3-position substituents $LAlEt_2$ ($L=CH_3C(O)C(Cl)=C(CH_3)NAr\;(L_1)$, $L=CH_3C(O)C(H)=C(CH_3)NAr\;(L_2)$, $L=CH_3C(O)C(Ph)=C(CH_3)NAr\;(L_3)$, and $L=CH_3C(O)C(Me)=C(CH_3)NAr\;(L_4)$, $Ar=2,6-^iPr_2C6H_3$) were synthesized in situ and employed in the ring-opening polymerization (ROP) of $\varepsilon$-caprolactone ($\varepsilon$-CL) and cyclohexene oxide (CHO). The 3-position substituents on the $\beta$-ketoamino ligand backbone of the aluminum complexes influenced the catalyst activity remarkably for both ROP of $\varepsilon$-CL and CHO. Aluminum $\beta$-ketoamino complexes displayed different catalytic behavior in ROP of $\varepsilon$-CL and CHO. The order of the catalytic activity of $LAlEt_2$ was $L_1AlEt_2$>$L_2AlEt_2$>$L_3AlEt_2$>$L_4AlEt_2$ for ROP of $\varepsilon$-CL, being opposite to the electron-donating ability of the 3-position substituents on the $\beta$-ketoamino ligand, while the order of the catalytic activity for ROP of CHO was $L_1AlEt_2$>$L_3AlEt_2$>$L_4AlEt_2$>$L_2AlEt_2$. The effects of reaction temperature and time on the ROP were also investigated for both $\varepsilon$-CL and CHO.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • 류재곤;정영일;김영훈;김인숙;김도훈;김성호
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권5호
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.